
www.manaraa.com

University of Iowa University of Iowa

Iowa Research Online Iowa Research Online

Theses and Dissertations

Spring 2013

Compaction mechanism to reduce test pattern counts and Compaction mechanism to reduce test pattern counts and

segmented delay fault testing for path delay faults segmented delay fault testing for path delay faults

Sharada Jha
University of Iowa

Follow this and additional works at: https://ir.uiowa.edu/etd

 Part of the Electrical and Computer Engineering Commons

Copyright 2013 Sharada Jha

This dissertation is available at Iowa Research Online: https://ir.uiowa.edu/etd/2533

Recommended Citation Recommended Citation
Jha, Sharada. "Compaction mechanism to reduce test pattern counts and segmented delay fault testing
for path delay faults." PhD (Doctor of Philosophy) thesis, University of Iowa, 2013.
https://doi.org/10.17077/etd.llxnejgn

Follow this and additional works at: https://ir.uiowa.edu/etd

 Part of the Electrical and Computer Engineering Commons

https://ir.uiowa.edu/
https://ir.uiowa.edu/etd
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F2533&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.uiowa.edu%2Fetd%2F2533&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.17077/etd.llxnejgn
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F2533&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.uiowa.edu%2Fetd%2F2533&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

COMPACTION MECHANISM TO REDUCE TEST PATTERN COUNTS AND

SEGMENTED DELAY FAULT TESTING FOR PATH DELAY FAULTS

by

Sharada Jha

An Abstract

Of a thesis submitted in partial fulfillment
of the requirements for the Doctor of

Philosophy degree in Electrical and Computer Engineering
in the Graduate College of

The University of Iowa

May 2013

Thesis Supervisor: Professor Sudhakar M. Reddy

www.manaraa.com

1

1

ABSTRACT

With rapid advancement in science and technology and decreasing feature size of

transistors, the complexity of VLSI designs is constantly increasing. With increasing

density and complexity of the designs, the probability of occurrence of defects also

increases. Therefore testing of designs becomes essential in order to guarantee fault-free

operation of devices.

Testing of VLSI designs involves generation of test patterns, test pattern

application and identification of defects in design. In case of scan based designs, the test

set size directly impacts the test application time which is determined by the number of

memory elements in the design and the test storage requirements. There are various

methods in literature which are used to address the issue of large test set size classified as

static or dynamic compaction methods depending on whether the test compaction

algorithm is performed as a post-processing step after test generation or is integrated

within the test generation. In general, there is a trade-off between the test compaction

achievable and the run-time. Methods which are computationally intensive might provide

better compaction, however, might have longer run times owing to the complexity of the

algorithm.

In the first part of the thesis we address the problem of large test set size in

partially scanned designs by proposing an incremental dynamic compaction method.

Typically, the fault coverage curve of designs ramp up very quickly in the beginning and

later slows down and ultimately the curve flattens towards the tail of the curve. In the

initial phase of test generation a greedy compaction method is used because initially there

are easy-to-detect faults and the scope for compaction is better. However, in the later

portion of the curve, there are hard-to-detect faults which affect compaction and we

propose to use a dynamic compaction approach. We propose a novel mechanism to

identify redundant faults during dynamic compaction to avoid targeting them later. The

www.manaraa.com

2

2

effectiveness of method is demonstrated on industrial designs and test size reduction of

30% is achieved.

As the device complexity is increasing, delay defects are also increasing. Speed

path debug is necessary in order to meet performance requirements. Speed paths are the

frequency limiting paths in a design identified during debug. Speed paths can be tested

using functional patterns, transition n-detect patterns or path delay patterns. However,

usage of functional patterns for speed path debug is expensive because generation of

functional patterns is expensive and the application cost is also high because the number

of patterns is large and requires functional testers.

In the second part of the dissertation we propose a simple path sensitization

approach that can be used to generate pseudo-robust tests, which are near robust tests and

can be used for designs that have multiple clock domains. The fault coverage for path

delay fault APTG can be further improved by dividing the paths that are not testable

under pseudo robust conditions, into shorter sub-paths. The effectiveness of the method is

demonstrated on industrial designs.

Abstract Approved: ____________________________________
 Thesis Supervisor

 Title and Department

 Date

www.manaraa.com

COMPACTION MECHANISM TO REDUCE TEST PATTERN COUNTS AND

SEGMENTED DELAY FAULT TESTING FOR PATH DELAY FAULTS

by

Sharada Jha

A thesis submitted in partial fulfillment
of the requirements for the Doctor of

Philosophy degree in Electrical and Computer Engineering
in the Graduate College of

The University of Iowa

May 2013

Thesis Supervisor: Professor Sudhakar M. Reddy

www.manaraa.com

0

Copyright by

SHARADA JHA

2013

All Rights Reserved

www.manaraa.com

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Sharada Jha

has been approved by the Examining Committee
for the thesis requirement for the Doctor of Philosophy
degree in Electrical and Computer Engineering at the May 2013 graduation.

Thesis Committee: ___________________________________
 Sudhakar M. Reddy, Thesis Supervisor

 David R. Andersen

 Mona K. Garvin

 Jon G. Kuhl

 Hantao Zhang

www.manaraa.com

 ii

2

To My Family

www.manaraa.com

 iii

3

ACKNOWLEDGMENTS

I would like to extend my sincere gratitude and appreciation to all those who have

challenged, supported and encouraged me in the entire course of PhD. First of all, I am

deeply grateful to my thesis advisor, Professor Sudhakar Reddy and would like to extend

my gratitude for all the expert guidance, valuable professional advice and help

throughout my thesis. To work with him was a great opportunity for me and has been a

great learning experience. He has been a constant support throughout the various phases

of PhD. I would like to thank the dissertation committee members Professor David R.

Andersen, Professor Mona K. Garvin, Professor Jon G. Kuhl and Professor Hantao Zhang

for their time and effort for my dissertation. It is an honor for me to have them as my

committee members.

I would like to express my sincere appreciation to Ramesh Sharma, Sanjay

Sengupta, Yonsang Cho, Kameshwar Chandrasekar and Weixin Wu at Intel who guided

and extended their valuable knowledge which helped me in my research work.

I would like to thank my colleagues Xiaoxin Fan, Amit Kumar, Joseph Howard

and others at University of Iowa who made my stay at Iowa an enjoyable one. I would

particularly like to thank my friends Swathi Kode, Hema Kumari Achanta and Pallavi

Marrapu for all their help and support.

I would like to express my deepest and everlasting gratitude to my parents and my

brothers for their love, support and encouragement throughout my life.

I would like to specially thank my husband, Saroj Kumar Jha, for his love, care

and encouragement. His contribution towards my thesis is immeasurable.

www.manaraa.com

 iv

4

ABSTRACT

With rapid advancement in science and technology and decreasing feature size of

transistors, the complexity of VLSI designs is constantly increasing. With increasing

density and complexity of the designs, the probability of occurrence of defects also

increases. Therefore testing of designs becomes essential in order to guarantee fault-free

operation of devices.

Testing of VLSI designs involves generation of test patterns, test pattern

application and identification of defects in design. In case of scan based designs, the test

set size directly impacts the test application time which is determined by the number of

memory elements in the design and the test storage requirements. There are various

methods in literature which are used to address the issue of large test set size classified as

static or dynamic compaction methods depending on whether the test compaction

algorithm is performed as a post-processing step after test generation or is integrated

within the test generation. In general, there is a trade-off between the test compaction

achievable and the run-time. Methods which are computationally intensive might provide

better compaction, however, might have longer run times owing to the complexity of the

algorithm.

In the first part of the thesis we address the problem of large test set size in

partially scanned designs by proposing an incremental dynamic compaction method.

Typically, the fault coverage curve of designs ramp up very quickly in the beginning and

later slows down and ultimately the curve flattens towards the tail of the curve. In the

initial phase of test generation a greedy compaction method is used because initially there

are easy-to-detect faults and the scope for compaction is better. However, in the later

portion of the curve, there are hard-to-detect faults which affect compaction and we

propose to use a dynamic compaction approach. We propose a novel mechanism to

identify redundant faults during dynamic compaction to avoid targeting them later. The

www.manaraa.com

 v

5

effectiveness of method is demonstrated on industrial designs and test size reduction of

30% is achieved.

As the device complexity is increasing, delay defects are also increasing. Speed

path debug is necessary in order to meet performance requirements. Speed paths are the

frequency limiting paths in a design identified during debug. Speed paths can be tested

using functional patterns, transition n-detect patterns or path delay patterns. However,

usage of functional patterns for speed path debug is expensive because generation of

functional patterns is expensive and the application cost is also high because the number

of patterns is large and requires functional testers.

In the second part of the dissertation we propose a simple path sensitization

approach that can be used to generate pseudo-robust tests, which are near robust tests and

can be used for designs that have multiple clock domains. The fault coverage for path

delay fault APTG can be further improved by dividing the paths that are not testable

under pseudo robust conditions, into shorter sub-paths. The effectiveness of the method is

demonstrated on industrial designs.

www.manaraa.com

 vi

6

TABLE OF CONTENTS

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

CHAPTER

1. INTRODUCTION.. 1

1.1 Motivation .. 1

1.2 Background .. 2

1.2.1 Fault Models .. 2

1.2.2 Test Generation ... 4

1.2.3 Design for Testability.. 5

1.3 Organization of Thesis .. 8

2. INCREMENTAL DYNAMIC COMPACTION TECHNIQUE 9

2.1 Introduction .. 9

2.2 Review of Previous Work ... 11

2.2.1 Reverse Order Fault Simulation .. 11

2.2.2 Forward-looking reverse order fault simulation 12

2.2.3 Reverse Order Test Compaction (ROTCO) 12

2.2.4 COMPACTEST .. 15

2.2.5 Double Detection .. 19

2.2.6 Essential Fault Reduction Method ... 21

2.2.7 Dynamic Test Vector Compaction .. 25

2.3 The Proposed Method .. 26

2.3.1 Motivation ... 26

2.3.2 Preliminaries .. 27

2.3.3 Incremental Dynamic Compaction Approach 32

2.3.4 Improving run time by Static Untestability Analysis 33

2.3.5 Reasoning Analysis to drop redundant faults 34

2.3.6 Automatic Identification of Parameters for Dynamic

Compaction... 39

2.4 Experimental Results .. 42

2.4.1 Comparison of basic incremental dynamic compaction over

cube merging technique .. 42

2.4.2 Comparison of basic incremental dynamic compaction with

static untestability analysis over cube merging technique 45

2.4.3 Comparison of incremental dynamic compaction with

automatic parameter identification method with cube

merging technique ... 45

2.5 Conclusion .. 50

www.manaraa.com

 vii

7

3. PATH DELAY FAULT TESTING WITH SEGMENTED FAULT

MODEL .. 52

3.1 Introduction .. 52

3.2 Preliminaries ... 53

3.3 Review of Previous Work ... 57

3.3.1 PODEM based Test generation for Path Delay Faults 58

3.3.2 DYNAMITE ... 60

3.3.3 Test Generation for Path Delay Faults in Non-scan Circuits 61

3.3.4 NEST: A Non-enumerative Test Generation Method 64

3.3.5 Segment delay fault model .. 66

3.4 The Proposed Method .. 68

3.3.1 Motivation ... 68

3.3.2 Test Generation Methodology ... 70

3.3.3 Segment Delay Fault Testing to Improve Fault Coverage 78

3.5 Experimental Results ... 81

3.6 Conclusion ... 84

4. CONCLUSIONS AND FUTURE RESEARCH ... 86

4.1 Conclusions .. 86

4.2 Future Work .. 88

REFERENCES ... 89

www.manaraa.com

 viii

8

LIST OF TABLES

Table

2.1 Before and after reverse order test compaction ... 13

2.2 Example of double detection ... 21

2.3 Approximate size of designs ... 43

2.4 Results for incremental dynamic compaction vs. cube merging technique. 43

2.5 Maximum coverage achieved with cube merging and incremental
dynamic compaction ... 44

2.6 Comparison of BDR and BDR+SUA approach ... 44

2.7 Comparison of results for API vs. cube merging technique for 32 bin size 47

2.8 Maximum coverage achieved with API and cube merging for 32 bin size 47

2.9 Parameter selection for API method for 32 bin size .. 48

2.10 Comparison of results for API(256 bin size) vs. cube merging technique
(at 256 and 1000 bin size base coverage) ... 49

2.11 Test size reduction, run-time overhead and maximum coverage achieved
with API and cube merging ... 50

3.1 Robust propagation requirements (output) ... 66

3.2 Fault Statistics ... 81

3.3 Fault Statistics for path delay ATPG with segmented path delay faults 83

www.manaraa.com

 ix

9

LIST OF FIGURES

Figure

1.1 Manufacturing test of a circuit ... 6

1.2 Scan based design ... 7

2.1 Example for maximal compaction ... 17

2.2 EFR example .. 24

2.3 Test Ti : X10 recording ... 25

2.4 Flow diagram for cube merging technique ... 29

2.5 Example for Cube Merging ... 30

2.6 An Example Fault Coverage Curve. .. 31

2.7 An example circuit showing a redundant fault ... 36

2.8 Implication graph generated during ATPG for testing d1 s-a-1 37

2.9 Implication graph generated during incremental dynamic compaction 38

3.1 Transition fault Model. ... 54

3.2 Robust Sensitization .. 55

3.3 Non-robust Sensitization ... 56

3.4 Pseudo-robust sensitization of AND gate .. 57

3.5 An example circuit .. 58

3.6 Testing for path delay fault ... 62

3.7 Atpg Flow ... 67

3.8 Example path delay fault ... 71

3.9 Overall Test Generation Flow. .. 72

3.10 Pseudo-robust conditions for AND gate ... 73

3.11 Pseudo-robust conditions for MUX gate .. 74

www.manaraa.com

 x

1
0

3.12 Pseudo-robust sensitization of D-latch for rising transition at data pin 76

3.13 Path sensitization with Sustaining. .. 78

3.14 Overall flow for Segmented Delay Fault Testing. .. 79

3.15 An example circuit depicting paths that are robustly untestable. 80

3.16 Tree structure for path storage. .. 80

3.17 Frequency versus IDV. ... 83

www.manaraa.com

1

1

CHAPTER 1 INTRODUCTION

With the advancement in science and technology, the VLSI designs today are

becoming more complex day by day. Testing of manufactured chips is very essential as it

directly impacts the cost. There are various types of errors – design errors, fabrication

errors, fabrication defects and physical failures. Design errors could be because of

incomplete or inconsistent specification, design rule violations. Fabrication errors can be

caused by wrong components, improper wiring, and improper soldering that could lead to

shorts of interconnects. Fabrication defects happen due to imperfections in manufacturing

process. Physical failure can happen during the lifetime of a system attributed to wear-out

or environmental factors or process variations. Apart from these types of errors coding

bugs also can lead to incorrect design and can cause errors. Thus it becomes essential to

test the devices for any defects after manufacturing.

1.1 Motivation

In this work we address two issues related to testing devices for failures – (i) large

test set size which impacts test application time and test storage requirements and (ii)

usage of functional patterns for speed path debug which is very expensive.

With increasing device complexity, testing complexity increases which in turn

increases cost of testing. Testing scan-based designs demands smaller test set sizes

because the test application time for such circuits directly depends on the number of

memory elements in the schips in a given amount of time and thus fewer testers would be

needed. Test pattern compaction plays a very important role in reducing the cost of

testing very large designs by reducing the test application time. This also impacts the

storage requirements of the test patterns in the testing hardware. In order to address this

issue, we propose a dynamic compaction technique which reduces the test pattern size.

www.manaraa.com

2

2

The second issue that is addressed in this work is identifying speed path failures

in design to meet high performance requirements. Generation of functional patterns for

all the critical paths is difficult and expensive. Functional patterns when used for speed

path debug have the disadvantage of long times for debug since functional patterns

typically are long and may take several cycles to reach an observed point. Therefore test

patterns for path delay faults can be used to address this issue. Typically the robust fault

coverage is very low for designs and thus it is not possible to cover all critical paths with

robust tests. To address this issue, a method of dividing a path into sub-paths and

generating tests for the sub-paths is proposed.

Section 1.2 discusses various fault models and the test generation process.

1.2 Background

1.2.1 Fault Models

Physical defects occur in chips during the chip fabrication process. There can be

various types of defects like signal line breaks, lines shorted to ground, delayed signal

propagation, etc. As there is a huge number of types of defects it is very difficult to

generate tests for all types of defects. Defects may or may not cause device failure. A

fault is a representation of a defect at the abstracted function level [2]. A good fault

model reflects the behavior of the defects closely and is easy to analyze. It also should be

computationally effective in fault simulation and test generation process [3]. Fault models

are technology independent and thus changes in technology do not change the test

generation for the faults. The different types of fault models are stuck-at fault model,

bridge fault model, transition fault model, path delay fault model, open and short fault

model, some of which are described below:

 Stuck-at fault model:

Stuck-at fault model is one of the earliest fault models and has been used for a

very long time. A stuck-at fault is a fault that forces a constant logic value (1

www.manaraa.com

3

3

or 0) on a signal line in the circuit, called stuck-at-1 or stuck-at-0 [5]. A short

between the signal line and ground line is modeled by a stuck-at-0 fault and a

short between a signal line and power line is modeled by a stuck-at-1 fault.

The signal line can be a primary input, primary output, inputs and outputs of

internal gates, fanout stems and fanout branches. A circuit that has n lines can

have 2n single stuck-at faults and 3
n

– 1 possible multiple stuck-at fault

combinations [2, 4]. Stuck-at fault model is used in the current work for test

pattern compaction. However, the technique is independent of the underlying

fault model.

 Bridge fault model:

Bridge fault model is another important fault model. This is a commonly

occurring type of fault. A bridge fault occurs when two signal lines are

shorted unintentionally [6][7]. The shorts have a finite resistance. A bridge

fault affects the voltage on both the signal lines involved in a bridge.

Modeling and test generation of bridges is a challenging issue and thus there

are several simplified models that have been developed for test generation.

The wired AND/wired OR bridge fault model a short defect between two

signal lines where the bridged nodes take a logic value which is the AND

(OR) of the bridged signal lines. The four-way bridge fault model models

various scenarios where the effect of the bridge fault depends on the relative

strengths of the gates involved in the bridge [8].

 Transition fault model:

In the transition fault model, the time taken for a transition from input of gate

to its output exceeds the specified limit [9]. The number of transition faults in

a circuit is linear to the number of circuit lines. Just as the stuck-at fault

model, there are two types of transition faults – slow-to-rise and slow-to-fall.

A two pattern test is required to activate a transition fault, where the first

www.manaraa.com

4

4

pattern sets the fault site to the initial value and the second pattern is required

to launch the transition and once the fault is activated, it is propagated to an

output.

 Path delay fault model:

The path delay fault models the cumulative effect of the delays along a path in

the circuit. If the cumulative delay exceeds the clock period for the path, then

the test pattern that fails the chip is said to detect the path delay fault. A two

pattern test is required to detect a path delay fault [1] which creates a

transition at the input of the path. The transition at the input of the path is

propagated along the path by satisfying necessary off-path conditions.

1.2.2 Test Generation

Test generation is the process of generating an effective set of test patterns by

which a high fault coverage can be achieved for a given fault model. The main objective

of test generation is to generate patterns that will detect defects in a chip. Since the

number of defects in a circuit is really large and generating test for all of them would be

unrealistic, test pattern generators target the faults which are an abstract representation of

defects. Test pattern generation consists of the following steps –

 Fault activation:

Fault activation sets the signal value on a line opposite to that produced by the

fault at the faulty site in the faulty circuit. For example, in order to activate a

stuck-at 1 fault on line l, 0 needs to be assigned to line l in order to excite the

fault.

 Fault propagation:

This is the second phase where the fault effect is propagated by sensitizing at

least one path from the fault site to a primary output or a scan cell. In order to

propagate the fault effect from the fault site, there could be one or more gates

www.manaraa.com

5

5

through which the fault effect can be propagated. These choices are called as

d-frontiers. D-frontiers are gates that have an output value of X and have a

fault effect on at least one of the inputs. The fault effect is propagated by

assigning non-controlling values to inputs other than the input that has the

fault effect. In order to propagate the fault effect from a fault site to an output,

there should be at least one x-path between the two nodes. An x-path is a path

between two gates of a circuit where the output value of all the gates is X. If

there exists no x-path between the fault site and any primary output or scan

cell, then a test cannot be generated for the fault.

 Justification:

Justification is the process of specifying primary input values or scan cell

values in order to produce the signal values required for fault activation and

fault propagation. The justification process is carried out by assigning

necessary values at the inputs of gates for which the output values are

specified to be 1 or 0 during fault activation and propagation, but are not

implied by the input values. The set of all such gates is called as j-frontier.

The effectiveness of the test set produced is measured in terms of fault coverage for the

given fault model, the number of test patterns generated. The number of test vectors

generated directly impacts the test application time.

1.2.3 Design for Testability

Test costs can be attributed to test pattern generation, fault simulation, generation

of fault location information, test equipment cost, cost related to testing process which is

the time required to detect and/or isolate a fault. The costs associated with testing could

be high and can even exceed design costs. In order to limit the testing costs and to

simplify testing a device, design for testability (DFT) techniques are used to ensure that a

device is testable. Controllability and observability play an important role in generating a

www.manaraa.com

6

6

test for a circuit. Controllability is the ability to obtain a required signal value at each gate

in a circuit by setting certain values on the circuit’s inputs. Observability is the ability to

determine a signal value at on any gate of the circuit by controlling the inputs of the

circuit and observing its outputs.

Basic testing infrastructure consists of three components: circuit under test,

automatic test equipment (ATE) and ATE memory to store test patterns and expected test

responses obtained by automatic test pattern generation (ATPG) tools as shown in Figure

1.1. In order to test a given circuit (CUT), test patterns are applied at the inputs of the

circuit and the output values obtained are compared with the test responses stored in the

ATE memory. A circuit is considered to be fault free if the output response of the circuit

matches with the output response stored in the ATE.

Figure 1.1 Manufacturing test of a circuit [54]

Testing combinational circuit is easier than testing sequential circuits since the

primary inputs can be set to required values and primary outputs can be observed. Testing

Automatic Test Equipment (ATE):

Control processor, timing module, power

module, format module

Circuit Under Test

(CUT)

ATE memory with test
patterns generated by
automatic test pattern

generation (ATPG)

ATE memory with

fault free responses

www.manaraa.com

7

7

sequential designs is challenging because it takes several test cycles to get desired values

on latches or flip-flops. This can also lead a large number of faults being untestable. In

order to cope with low controllability and observability of sequential designs, design for

testability (DFT) techniques is employed. The testability of a device improves with DFT

methods since it enhances the controllability and observability of sequential elements.

This is achieved by introducing scans in the design.

Scan design is the most widely used structured DFT method that is used to

improve the controllability and observability of the storage elements in sequential design.

This is achieved by converting the sequential design into a scan design and the design is

operated in functional mode and test modes. In functional mode, the circuit operates in

functional configuration by turning off all the test signals. During test mode, a test mode

signal is applied which converts all the flip-flops in the design into one or more shift

registers called scan chains. This improves the controllability of the flip-flops as they can

now be set to desired state during the test mode by shifting in appropriate values.

Figure 1.2 Scan based design

Scan-enable SE

Primary Inputs Primary Outputs

Scan-in

SI

Scan-out

SO

Combinational

Logic

Scan

flip-

flops

www.manaraa.com

8

8

The observability of the flip-flops is also enhanced since the states of the flip-flops can be

observed by shifting out the content of the scan chains.

There are two types scan designs: full scan and partial scan designs. In full-scan

design all the storage elements are converted into scan cells and combinational ATP can

be used for test generation. In partial scan designs a portion of the storage elements is

converted into scan cells and sequential ATPG is required for test generation since the

design is still sequential since the complete design is not converted into scan design. The

designs used in the current work are partially scan designs.

1.3 Organization of the Thesis

The thesis is organized as follows. Chapter 2 presents a dynamic compaction

technique to address large test pattern size. Chapter 3 presents path delay fault test

generation methodology in partially scanned designs and method to improve robust fault

coverage. Chapter 4 draws the conclusions.

www.manaraa.com

9

9

CHAPTER 2 INCREMENTAL DYNAMIC COMPACTION TECHNIQUE

In this chapter we review various compaction techniques in the literature and

present an incremental dynamic compaction approach to reduce test pattern size. In order

to address the long run times of the approach we also present a static untestability and

reasoning analysis method based on [15, 56]. Experimental results on industrial designs

demonstrate the effectiveness of this technique.

2.1 Introduction

Earlier the major focus of research was to generate a complete test set efficiently

for a given design. Several test generation algorithms have been proposed over the years

[11-15]. Over the past two decades, the effort is directed towards minimizing the size of

the test pattern set produced. The problem of finding the minimum test size for an

irredundant combinational circuit by itself is proven to be NP-hard [17]. There are several

compaction algorithms in the literature that are based on various heuristics, for example –

test generation based on independent fault set and compatible fault sets[19-21], double

detection[19, 22], reverse order fault simulation[23], rotating backtrace[20]. Every new

methodology is targeted towards getting better test size reduction and thus closing the

gap further to the lower bound.

The size of the test set directly impacts the test storage requirements and test

application time, especially for circuits using scan design. The test application time is

directly proportional to the product of the number of test patterns and the number of scan

cells in the longest scan chain [19]. This necessitates generation of small test sets.

The complexity of the compaction process plays an important role in test

compaction. There are computation-intensive procedures proposed in the literature that

produce minimal size test sets close to the lower bound [21, 24, 25]. For instance, in [9]

tests are generated repeatedly which can detect several faults at the same time so as to

www.manaraa.com

10

1
0

replace previous tests found. Though these methods produce small test sets, they are not

suitable to large designs. Methods based on simple and efficient heuristics can be found

in [20, 23, 26].

Test pattern compaction is aimed at generating a pattern set in which a test detects

as many faults as possible. There are two ways of compaction – static and dynamic and

are described below.

 Static Compaction

Static compaction is applied as a post processing step to already generated test

sets, to reduce the test set size further and therefore is independent of the test

generation process. Static compaction is performed after all the patterns are

generated and this is independent of test generation.

 Dynamic compaction

Dynamic compaction is incorporated within the test generation process where a

test cube is generated for a fault and the generated test cube is added as

constraints to the next targeted fault. The advantage of dynamic compaction over

static compaction is that it reduces the time required for post-processing step for

compacting patterns. The dynamic compaction begins with a fault which is on top

of previously ordered fault list, called as primary fault. The primary fault is

targeted for test generation and if a test is generated for the fault, another fault

called secondary fault is picked and a test generation for the fault is attempted.

The test generation tries to generate a test for the secondary fault with the primary

input values and scan cell values specified by previously generated test vector.

The test generation for the secondary fault specifies only the unspecified values

remaining from the previous test vector. This process is repeated for all the

remaining faults remaining in the fault list or all the inputs are specified [20]. The

unspecified inputs of the resulting test vector at the end are then random filled

with 1s and 0s. This process is repeated with a different primary fault and the

www.manaraa.com

11

1
1

entire process of is repeated with remaining secondary faults and the process

continues until all the faults in the fault list are tried as primary faults.

2.2 Review of Previous Work

In this section below, some of the static and dynamic compaction methods are reviewed

from literature.

2.2.1 Reverse Order Fault Simulation

Reverse order fault simulation is a very simple and effective method of

compacting test patterns. The test patterns are simulated in reverse order of test

generation, wherein a test that was generated later is simulated earlier [5]. If a test does

not detect any new faults when it is simulated, then the test is dropped from the test set.

Reverse order fault simulation is a widely used static compaction technique [23, 28]

suitable for combinational ATPG. But reverse order simulation is most beneficial when

applied to effective tests. Effective tests are obtained by simulating a test set in the order

in which it was generated with fault simulation used for fault dropping. A test generated

by deterministic test generation method is fault simulated to drop the faults it detects and

thus every new test detects faults not detected by previous tests. If the test set is generated

by non-deterministic method like random test generation, fault simulation with fault

dropping needs to be additionally done so as to get effective tests. Once the effective tests

are obtained, these can be used for reverse order fault simulation. However, if the

additional pass of fault simulation is not applied to non-deterministic patterns, the reverse

order simulation would only identify effective tests of the test patterns in the reverse

order which would not achieve as much test size reduction as obtained when applied to

effective tests [29].

www.manaraa.com

12

1
2

2.2.2 Forward-looking reverse order fault simulation

Forward-looking reverse order fault simulation [29] is an improvement over

reverse order fault simulation. This method records the information about the first test in

the test set that detects a fault for the first time. This is obtained by simulating the test set

in the order in which it was generated combined with fault dropping. With this

information, tests can be further dropped during reverse order fault simulation. This can

be illustrated as follows. Consider a test set T = {t0, t1,…, tn-1} and let F = {f0, f1,…, fp-1}

be the set of target faults. During forward looking reverse order fault simulation, every

test in T is simulated in the reverse order with fault dropping similar to reverse order fault

simulation. Before simulating a test ti, it is first determined whether it is necessary to

simulate a pattern, and if it is not necessary then it is dropped without simulating the

pattern. The decision to ascertain whether a test ti is necessary or not is based on the

information of the first test that detects each test during the original order. Let the

detection vector index of a test that detects a fault for the first time during forward order

be denoted as detindex (fi). This can be obtained during fault simulation of F. During

forward looking reverse order fault simulation, before simulating a test, the detection

vector index of every fault , is compared against the current test index. If the

current test index i is greater than the detection vector index of all the faults in F, then the

test is dropped without simulating it because the faults that will be detected by the test t i

will be detected by later tests during reverse order fault simulation. If a fault is

such that the detection vector index of fi is the same as current test index, then the pattern

is simulated because there will be no further tests that would detect fi

2.2.3 Reverse Order Test Compaction (ROTCO)

Reverse Order Test Compaction[27] is a method similar to reverse order fault

simulation in [23] but with the difference that the test vectors are allowed to be

“modified” in the process, thereby increasing the possibility of detecting faults that were

www.manaraa.com

13

1
3

detected by earlier test vector which could potentially result in a smaller test set. This is

based on the following reason. During the process of test generation, after every test is

generated, fault simulation is performed and all the faults detected by the test are

dropped. The faults dropped include the target faults for which the test was found and the

faults that were detected additionally due to random filling of unspecified bits in the test

vector. Only small number of faults is typically detected by the specified bits of the last

vectors in the test set which are detected for the first time by the test vectors. There are a

large number of unspecified inputs which can be specified in such a way that the faults

detected by test that are generated earlier during test generation would be detected by the

later tests. Therefore, the tests generated earlier during test generally could be possibly

dropped. The order in which the vectors are processed is in the reverse order of test

generation.

Table 2.1 Before and after reverse order test compaction [27]

Before reverse order test compaction After reverse order test compaction

Test Fault Test Fault

t1 f1, f2 t1 f1, f2

t2 f3 t21 f2, f3

t3 f4 t31 f1, f4

The complexity of ROTCO is much less than the complexity of complete test

generation because the specified values in a test vector are left unchanged.

The test compaction procedure can be explained with an example given in [27].

Consider an irredundant circuit with four faults {f1, f2, f3, f4}. Let the faults be detected

by three test vectors as shown in the Table 2.1 above. The test t3 can be extended into a

www.manaraa.com

14

1
4

test t31 which detects faults that are detected by earlier vectors by using the unspecified

inputs of t3. Similarly if t2 can be extended to t21 such that it can detect f2 apart from f3,

then t1 can be dropped from the test set. This is shown in Table 2.1. This would not be

possible with reverse order fault simulation.

The following information is required for ROTCO-

1) The test set T = {t1, t2,…, tk}.

2) Fault detected by each test vector, which are not detected by earlier test vectors.

This is obtained by fault simulation which drops faults that are detected by a test

vector. Let Fi be the set of faults detected by a test ti

3) In order to distinguish the inputs specified by test generation from the inputs

specified by random filling of unspecified bits, the unspecified bits filled by

random filling should be given as x0 or x1 (x0(x1) stands for input randomly set to

0(1))

The tests are considered in reverse order. All the inputs with value x0 or x1 are

changed to x. The fault lists F1, F2,…. Fi-1 are considered in increasing order of the size of

the fault lists. The order within a fault set is not restricted. The test generation starts with

specified inputs specified by test vector tk until t1. After attempting to generate a test tk1

which possibly detects other faults apart from Fk, the unspecified inputs that are still x are

changed back to their original value (x0 or x1). Since some of the unspecified values

might get specified in the test generation, some of the faults in Fi may no longer be

detected. So, fault simulation is carried out for the modified t i and if the faults in Fi are no

longer detected by the test vector, the test vector is restored to its original values. This

ensures that the fault coverage is maintained as before. If the modified t i detects all the

faults in Fi, it replaces the original test in the test set. All the faults in F1, F2,…, Fi-1 are

fault simulated and all the faults that get detected are removed from their respective fault

lists and are added to fault list Fi. If a fault list becomes empty in this process, the

www.manaraa.com

15

1
5

respective test is dropped from the test set. This process is repeated for all ti in test set T.

The remaining vectors left after this procedure is the reduced test set for the circuit.

The test set size reduction when ROTCO is applied after test vectors generated

using PODEM algorithm [13] is up to 56% on ISCAS 85 circuits and PLA benchmark

circuits in [27]. Further when ROTCO was performed over COMPACTEST [20] with

reverse order fault simulation, the test set size reduction was up to 20%. This is because

the test sets produced by COMPACTEST is already compacted to a great extent and the

number of faults detected by a test vector on an average is very large. This method is

applicable for combinational patterns only.

2.2.4 COMPACTEST

In COMPACTEST [20], the authors propose a test generation method which uses

independent faults for fault ordering, a test compaction method and a dynamic line

justification method to generate tests that detect large number of faults and hence reduce

the test set size. The importance of independent fault sets in the reduction of test size has

been established in [31, 32]. An independent fault set is defined as a set of faults for

which there exists no test that detects any pair of faults in the set. Independent fault sets

are very useful for test generation because the smallest test set size cannot be smaller than

the size of the largest independent fault set. The problem of computing the set of

independent faults of maximum cardinality in a circuit is np-hard [16]. Algorithms to

compute the set of independent faults of maximum cardinality (MIFS) in a circuit is

discussed in [20, 32].

During the pre-processing step of COMPACTEST, an ordered fault list is derived

using MIFS for fanout free regions (FFRs) for collapsed fault set. The largest MIFS is

placed at the top of the fault list, which is followed by the next largest MIFS and so on.

The remaining collapsed faults which do not belong to any MIFS are added to the end of

the fault list. During the computation of MIFS for the circuit, information regarding the

www.manaraa.com

16

1
6

subsets of faults that can be potentially tested by the same vector is gathered. Basically,

every fault f in an MIFS of an FFR is associated with other faults in the fanout-free

region which can potentially be tested along with the fault f.

2.2.4.1 Maximal Compaction Procedure

The compaction procedure of COMPACTEST is described as follows. The fault

at the top of the ordered fault list is selected to be targeted. This is called the primary

fault. It is attempted to generate a test for the primary fault if possible. The information

gathered during the pre-processing stage to find faults that can be targeted with the same

fault in the FFR region to generate a test is utilized during the test generation process for

the primary fault. As a result, a test vector is generated which detects a primary fault

along with possibly additional faults in the FFR region. Once the test vector is generated,

it is then maximally compacted to maximize the number of unspecified values in a test

vector before targeting the next fault. The maximal compaction happens as follows. A

primary input p is selected from the set of specified values in the test vector whose value

is specified for the first time by the fault f targeted most recently. The value specified for

the primary input is then complemented and implication is performed for the modified

test vector. This is to ensure that the modified test vector still detects the fault f and if it

still detects the fault f, the primary input p is marked, and otherwise it is left unmarked.

The value of the primary input is restored to its original value as in the original test

vector. This process is repeated for all the primary inputs specified for the first time

during the test generation for f. Once all the primary inputs are tried, the primary inputs

that were marked during the compaction procedure are then unspecified. This can be

explained by an example from [20].

Consider a stuck at 0 fault on line a in the circuit shown in Figure 2.1. Let (1111)

be the test vector generated for a stuck-at-0. The maximal compaction procedure starts by

complementing the value of the primary input a, from 1 to 0. Implication is performed to

www.manaraa.com

17

1
7

Figure 2.1 Example for maximal compaction [20]

check whether the fault a stuck-at 0 is still detected under the test (0111). Since a stuck-at

0 is not activated in this case, the input a is left unmarked and the value of input a is

restored to 1. The next primary input b is considered and the value of 1 is flipped to 0 and

implication is performed. Since the fault a stuck-at-0 still gets detected under the

modified vector (1011), input b is marked. In a similar way, input is complemented and

the same check is performed and since 1101 detects a stuck-at 0 it is also marked. Input 4

is left unmarked because 1110 does not detect a stuck-at 0. Thus the compacted vector is

(1xx1), where inputs a and d are left unmarked and inputs b and c are marked.

The number of unspecified values obtained in the maximal compacted vector is

independent of the order in which the inputs are processed since every input is processed

beginning from the same initial state where all the other specified inputs in the original

test vector remain the same except the current primary input on which the check is being

performed. The resulting compacted vector contains the original vector, but not

necessarily the fault for which the original test vector was generated will be detected by

the specification of the unspecified values later.

b : 1

a : s-a-0
c : 1

d : 1
f

e

g
h

i j

k

l
`

m

www.manaraa.com

18

1
8

After the primary fault f is targeted and the above compaction procedure is

performed, the next fault in the ordered fault list picked for target for test generation. This

fault is called secondary fault. The test generation process begins with the specified

values in the test vector generated for the previous targeted fault and a test is generated

for the secondary fault if possible by assigning values to only the unspecified inputs of

the test vector. Once a test is generated for the secondary fault, additional faults present

in the FFR region of the targeted secondary fault are tried for test generation to maximize

the number of faults detected by the test vector. After this, the specified inputs of the test

vector that were assigned during test generation of the secondary fault, are processed for

maximal compaction. If the test generation for the targeted secondary fault was not

possible, all the primary inputs specified during the process of test generation for the

secondary fault are unspecified.

This process is repeated until either all the faults in the fault list have been tried as

secondary faults or all the inputs are specified in the test vector. Once either of the

conditions is met, if there are unspecified inputs left, then they are randomly specified

and the test vector is fault simulated. All the faults detected by the test vector are dropped

from the fault list. The process of test generation and maximal compaction is repeated

with the next primary fault which is at the top of the fault list. This process continues

until either all the faults have been tried or the fault list is empty.

2.2.4.2 Rotating backtrace

The backtrack process is modified in way such that different paths are sensitized

each time a line needs to be justified on a line. In the process, different faults along the

various paths are potentially detected by the test vector generation. Rotating backtrace

works as follows. Every gate is associated with a counter which is initialized to 0. During

backtrack, whenever the output of a gate needs to be justified to a value which can be

obtained by setting any of the inputs to the controlling value, the backtrace procedure

www.manaraa.com

19

1
9

selects an input which is given by the counter. The counter is then incremented modulo n,

where n is the number of inputs to the gate. Thus, each time a value needs to be justified

at the output of a gate; it is done by setting a different input line. If the input selected by

the counter already is specified, another input is selected and the counter is not

incremented. In addition to the rotating backtrace using a counter to select an input,

controllability measures can also be used to bias the selection of inputs.

The experimental results with the heuristics of COMPACTEST applied on

ISCAS-85 and ISCAS-89 benchmark circuits demonstrate a 50% reduction in the test set

size on an average when compared to the test patterns generated on a test generator using

PODEM and a deductive fault simulator, with reverse order fault simulation performed at

the end of both the methods. There is a 2X increase in run-time with the COMPACTEST

procedure of compaction. There is not much reduction in size of the test set when reverse

order fault simulation is performed on the test set produced by COMPACTEST. This is

illustrated the fact that COMPACTEST produces test patterns which are irredundant.

2.2.5 Double Detection

In Double detection [22], a dynamic compaction method is proposed. Double

detection is based on using the unspecified input values during test generation process to

increase the possibility of obtaining and then later dropping redundant test vectors. In

order to accomplish this, a fault is detected twice before it is dropped from the fault list.

For every fault in the fault list the following information is recorded:

1) The fault index

2) The information about number of times a fault is detected is stored in a variable

called check and is coded as follows-

check = 0 implies fault is not detected yet,

check = 1 implies the fault has been detected once,

check = 2 implies the fault has been detected at least twice

www.manaraa.com

20

2
0

check = 3 is when a fault is aborted during test generation due to backtrack

limit

3) The test vector that detects a fault for the first time is stored in a variable called

tvector

Deterministic test generation happens until there exists a fault with check is 0

exists. A fault f1 with check = 0 is chosen as a primary fault that is to be targeted. After a

test is generated for the primary fault f1, another fault f2 is selected. f2 is called secondary

target fault. The test vector that was generated for f1 is attempted to be extended by

specifying additional inputs and is possible a test is generated for fault f2. This process is

repeated until the test vector is fully specified or there are no more additional faults can

be detected. Fault with check = 0 are selected first as secondary faults, followed by faults

with check = 1. A fault is aborted when it is a primary fault there is no test that can be

obtained within the given backtrack limit. The test generation procedure in [22] differs

from [20] in which the faults with check = 1 are not selected as secondary faults and fault

simulation is not performed on such faults.

After a test is generated, the test vector is simulated and the number of faults

detected for the first time by the test are stored in a variable one_check. When additional

vectors are generated, if the variable check of a fault increases from 1 to 2, one_check for

the test vector is decreased by one. Therefore, one_check represents the number of faults

detected only by the test vector. If one_check for a test vector is greater than 0, it means

that the test vector is essential and cannot be dropped. If one_check is 0, then the faults

detected by the test vector are also detected by other vectors. This is shown in Table 2.2.

Once test generation is completed, the redundant test vectors are reduced as follows.

Vectors with one_check is greater than 0 are simulated first since these vectors detect

faults that cannot be detected by any other vector in the test set. Then the remaining

vectors whose one_check is 0 are simulated in reverse order compared to their original

order in which they were generated. This way redundant test vectors are dropped and

www.manaraa.com

21

2
1

Table 2.2 Example of double detection [22]

Test vector Faults detected one_check

t1 f1, f3 1

t2 f1, f2 0

t3 f2, f4 0

t4 f4, f5 1

additional redundant vectors can be dropped by recalculating the variables check and

one_check and tvector. This process is repeated until one_check for all test vectors

becomes greater than 0. This method along with dynamic fault ordering and rotating

backtrace [22] was compared against test patterns generated by the method used in [30]

where redundant elements are removed from circuits using test pattern generation. The

test pattern size is 50.7% smaller than [30] and the CPU time required is 3.6X times the

time in [30].

2.2.6 Essential Fault Reduction Method

Hamzaoglu and Patel in [47] propose an essential fault reduction (EFR) technique

for generation of compact test sets in combinational circuits for single stuck-at faults and

a heuristic for estimation of minimum stuck-at fault test set size. These algorithms

together with dynamic compaction method of [22] are incorporated into the test

generation system in [48]. This method found better lower bounds and generated smaller

test sets than the methods of [49, 50]. EFR algorithm is an improvement over

Two_by_One (TBO) [19, 51] and Essential Fault Pruning (EFP) algorithms [52].

Some of the definitions used in [47] are defined as follows. A test vector is called

an essential vector if it detects at least one fault that is not detected by any other test

vector in the test set. An essential fault of a test vector is a fault that is detected only by

www.manaraa.com

22

2
2

the test vector in the test set. A test vector is considered redundant relative to a given test

set, if it does not detect any essential faults. An essential fault f of a test vector is said to

be pruned if a test vector in the test set is replaced by a new test vector
 that

detects the essential fault f, essential faults of and faults detected only by and .

A pair of faults is compatible if they can be detected by the same test vector. If the

two faults cannot be detected by the same vector, they are called as incompatible. An

incompatibility graph for a given set of faults is defined as where

 and and are incompatible,

and [18, 52, 19, 21].

Once the initial test set is generated, EFR algorithm is used repetitively to prune

essential faults of each test vector as much as possible. If all the essential faults of a test

vector are pruned then a test is redundant and can be dropped from the test set. The TBO

algorithm compacts tests by replacing two test vectors with a new one. This is

accomplished by finding a test vector that detects the essential faults of both the vectors

and the faults detected only by the two vectors. If this is not achievable by TBO, it may

be achieved by three_by_two algorithm which replaces three test vectors with two new

ones if possible. However, the N_by_M algorithm could be computationally expensive

since in the worst case, it may involve checks where T is the number of initial test

vectors generated.

EFP algorithm reduces the number of tests by pruning the essential faults of each

test vector and if all the essential faults of a test vector are pruned, the vector can be

dropped since it is redundant. EFP achieves better performance than TBO since it allows

a test vector to prune its essential faults by replacing more than one vector in the test set.

EFP tries to generate a test vector for fault sets, where F is the number of

essential faults and T is the number of test vectors generated initially. Generally F is

larger than T, therefore EFP is more expensive than TBO. For N>2, the N_by_M

algorithm is however more expensive than EFP.

www.manaraa.com

23

2
3

The limitation of TBO and EFP approaches is that they carry out a localized

greedy search by focusing on removal of one test at a time by pruning its essential faults.

If the algorithm fails to prune even one of the essential faults for a test ti , the original test

is recovered. This restriction may prevent elimination of another test vector tj from the

test set because the essential faults of tj may be incompatible with essential faults of all

other tests in the test set. However, the essential faults of tj may be compatible with those

of ti except one of them. If ti were allowed to prune the incompatible essential fault then

the essential faults of tj can be pruned and thus the test can be dropped from the test set.

EFR algorithm overcomes the limitation of TBO and EFP by reducing the number

of essential faults for a test vector by pruning the essential faults as many as possible. The

method does not stop when it fails to prune one of the essential faults and goes ahead

pruning other essential faults of the test vector. This can be explained with an example in

[47] shown in Figure 2.2. Let the test set detect faults as given in the

Figure 2.2. The incompatibility relation is also shown in Figure 2.2. TBO and EFP

methods cannot reduce the test set size. EFR can reduce the size of the test set by

replacing test vectors with
 which detects f2 and f3, with

 that detects f1, f5 and f6

and with
 that detects f4 and f7. It can be observed that now is redundant and thus

it can be dropped.

EFR can be used iteratively for further compaction. EFR has a worst case

complexity as that of EFP and if used iteratively, the worst case complexity is

where I is the number of iterations. The execution time is reduced based on a new

incompatibility relation for stuck-at faults. This is based on the fact that even though a

fault is pair-wise compatible with all the faults in a given fault set, it may be incompatible

www.manaraa.com

24

2
4

if the faults are targeted together. The incompatibility relation is defined as follows. For a

given set of faults , the new incompatibility graph is defined as

 where and the faults in

are incompatible with the faults in , and . This is used to speed

up EFR algorithm. The iterations of the EFR algorithm are stopped as soon as the

minimum test set size is reached instead of iterating a pre-determined number of times.

Figure 2.2 EFR example [47]

www.manaraa.com

25

2
5

2.2.7 Dynamic Test Vector Compaction

The dynamic compaction approach in [53] differs from traditional dynamic

compaction approach. Typically in dynamic compaction, once test is generated for a

fault, the next fault is picked from the fault list and is targeted for test generation. In [53]

however, after a test is generated for a fault, instead of selecting the next untested fault

from the fault list and generating a test for the fault, a compaction procedure called

COMPACT is used. In the compaction procedure, a test Ti is compared with other tests

generated earlier and if Ti is compactable with any of the previous tests Tj, where j<i then

Tj is replaced with . If Ti is not compactable the test is added to the test vector set.

This compaction is performed repetitively and test compaction is obtained.

Figure 2.3 Test Ti : X10 recording [53]

An efficient data structure is used for the comparison of test vectors. The data

structure contains an N dimension table, where N is the expected number of tests. Each

test vector is identified by index as Ti and belongs to a cell sequence of type test-vector.

The ith test vector can be obtained from the table TEST as TEST[i]. Each Ti record is a

cell which contains two fields called depend and value both being integer type. The first

field depend specifies the “significance” of a PI, i.e., if the value is 0 or 1 then it is

considered to be significant and depend is set to 1 and if value is X then depend is 0. The

second field value contains the test vector values for the corresponding PIs and if value is

www.manaraa.com

26

2
6

1, it is always significant and if it is 0, then depend field is looked-up. This is illustrated

in Figure 2.3. An integer consisting of 32 bits can store upto 32 PI values. The values of

PIs are stored with two integers as explained above.

In order to check for compactability between a test generated test and for a test

generated previously TEST[i] from the table, the depend fields are compared first and

then the value fields are compared. Once the comparisons are done and if the test

generated test is compactable with the test TEST[i], the test is compacted with TEST[i].

In this way, the test generated test is compared with all the previously generated tests. If

the test is not compactable with any of the tests, then the test is added to the table TEST.

Before picking the next fault for targeting, the compacted result or the generated test test

is fault simulated.

The advantage of this method is it is very simple and the memory requirements

are minimal since the values of the inputs are stored in two integers. The compaction

achieved by this method is 40% for smaller circuits and about 50% for larger circuits

(over 1000 gates) when compared with tests generated using PODEM.

2.3 The Proposed Method

In this section, we present an incremental dynamic compaction approach that uses

a cube merging mechanism with dynamic compaction. We also propose a reasoning

analysis approach to drop redundant secondary faults from being targeted again in order

to improve the run-time.

2.3.1 Motivation

The importance of minimum size test sets has been observed in the previous

section and we have reviewed methods from literature to achieve this. Test set size

impacts the test storage requirements and test application time. Test application time is

directly proportional to the product of the number of tests and the number of scan cells in

www.manaraa.com

27

2
7

the longest scan chain in the design. In this work, an incremental approach is proposed

which addresses the issue of growing test pattern size.

The fault coverage curve for the designs typically ramps up vigorously in the

beginning due to random fault detections and slows down ultimately becoming almost

flat after certain fault coverage is reached. Therefore, towards the tail end of the fault

coverage curve there are very few faults detected per pattern. The existing test generator

uses cube merging initially which is a greedy way of compaction and we use focused

dynamic compaction after a threshold fault coverage after which the ramp slows down so

as to utilize the benefit of random detections in the initial portion of the fault coverage

curve and get the benefit of dynamic compaction in the tail of the curve.

In this work we present an incremental dynamic compaction method and propose

methods to reduce run-time. The contributions of the work are:

1) Propose a test compaction approach that utilizes the benefit of both cube

merging and dynamic compaction by initially performing cube

merging/greedy compaction and later switching to dynamic compaction in the

tail of the fault coverage curve.

2) Static untestability analysis to identify and skip targeting secondary faults that

cannot be activated and/or propagated with a given testcube.

3) Reasoning analysis to identify untestable faults during dynamic compaction

which are untestable independent of constraints set by dynamic compaction

2.3.2 Preliminaries

In this section the fault coverage curve is discussed and cube merging approach is

described that is used during the initial ramp of the fault coverage curve. The basic

incremental dynamic compaction with static untestability and reasoning analysis to

reduce run time for dynamic compaction is presented later.

www.manaraa.com

28

2
8

2.3.2.1 Cube merging Method

In this section we describe the cube merging technique existing in the test pattern

generator similar to [53] which is used to compact patterns on the fly as they are

generated. Once a test is generated for a fault, the raw pattern is stored in a bin. A bin is a

data structure to hold a compacted pattern resulting by merging of raw patterns. The

number of bins is programmable and can be specified at the beginning of ATPG. A test

cube is a pattern generated by the ATPG and the unspecified values are not specified yet.

A new pattern generated is merged with the first available bin with which the test cube is

compatible. In order to find whether a pattern is compatible with the pattern in a bin, the

scan cell values and the primary input values are compared. If there are no conflicting

values then the pattern is merged with the pattern in the bin.If there is no such bin

available with which the raw pattern can be merged, the pattern is stored in the next

available empty bin. If there is no empty bin remaining, then a bin that has the most

number of tests compacted is written out after filling the unspecified bits with 1s and 0s.

The compacted pattern that is written out is simulated and all faults that are detected by

the pattern are dropped and are not targeted later. The overall flow of cube merging is

illustrated as a flowchart in Figure 2.4.

The process of cube merging can be explained with an example as shown in

Figure 2.5. Consider a two bin datastructure for storing test cubes. The number of

testcubes merged is initialized to 0 for every bin. When testcube t1 is generated, it is

stored in the first bin, i.e. bin 0 as shown in Figure 2.5(b), since it is the first compatible

bin available and the number of testcubes merged is updated to 1. When testcube t2 is

generated, since it is compatible with the testcube in the first bin, it is merged with the

testcube already existing in the bin and the merged pattern is stored in the bin. The

number of testcubes merged is updated to 2 for bin 0. When testcube t3 is generated, since

it is not compatible with the pattern in bin 0, it is stored in the next compatible bin, i.e.

bin 1 as shown in Figure 2.5(b). The number of testcubes merged is changed from 0 to 1

www.manaraa.com

29

2
9

Figure 2.4 Flow diagram for cube merging technique

for bin 1. When testcube t4 is generated, it is incompatible with both bin 0 and bin 1 and

since there are only two bins available, testcube in bin 0 is picked to be fault simulated

since it has the maximum number of testcubes merged. Once the testcube is selected for

fault simulation, the unspecified bits are random filled and the pattern is then fault

simulated and the detected faults are dropped from the fault list. The testcube t4 is now

stored in bin 0 as shown in Figure 2.5(c).

Specify number of bins
to be used for merging
patterns

Target a randomly
picked fault if one
exists

Test generated
for fault?

Search first
compatible bin

Does a
compatible
bin exist?

Merge with the
compatible bin

Save the
pattern in the

bin

Does an
empty bin

exist?

Write out the pattern of
the bin that compacts
maximum number of
faults after random fill

Yes

No

No

Yes
Yes

No

www.manaraa.com

30

3
0

Test Index Testcube

t1 1X0X1X

t2 110X1X

t3 10X10X

t4 11010X

(a) Test Cubes Generated

(b) Bin data Structure - 1

(c) Bin Data Structure - 2

Figure 2.5 Example for Cube Merging

The next section describes fault coverage curve when the cube merging technique

is used and the motivation to use dynamic compaction so as to generate compatible test

cubes and reduce the pattern count.

2.3.2.2 Fault Coverage Curve

A fault coverage curve plots the fault coverage with respect to the number of tests

or equivalently scan operations. A fault coverage curve when the above cube merging

Bin

Index

Merged

testcube

Num cubes

merged

0 110X1X 2

1 10X10X 1

Bin

Index

Merged

testcube

Num cubes

merged

0 110X1X 2

1 10X10X 1

<- Fault simulated

after random fill

www.manaraa.com

31

3
1

method/greedy method of compaction is used is shown in Figure 2.6. Initially there is

huge number of detections during fault simulation. The random filling of unspecified

values in the pattern causes a large number of faults to be detected during fault

simulation. There is a rapid increase in the fault coverage within very small number of

scan operations.

Initial Ramp Tail

Behavior Large random detects

on fault simulation

Effect of cube merging and

random detects on fault

simulation

Few random detects on fault

simulation, patterns not merge-

able

Solution No compaction

needed

Cube merging performs well Cube merging not suitable and

needs compaction friendly

patterns

Figure 2.6 An Example Fault Coverage Curve

Compaction does not really have an impact on the number of fault detections. This is

shown as the initial region of the fault coverage curve in Figure 2.6. The coverage ramp

slows down after a few scan operations and there is lesser number of detections during

www.manaraa.com

32

3
2

fault simulation. The compaction of patterns, by cube merging together with detections

during fault simulations contribute to the fault detections in this region as shown as the

ramp region in Figure 2.6. In the tail portion of the curve there is very little random

detection during fault simulation. The patterns generated are not compaction friendly and

thus very few patterns are compacted in every bin. Therefore, in order to generate

compaction-friendly patterns dynamic compaction would aid in better compaction of

patterns by generating a pattern incrementally.

In the next section, the incremental dynamic compaction procedure is described.

2.3.3 Incremental Dynamic Compaction

In the incremental dynamic compaction approach we present in this section,

dynamic compaction is used on top of cube merging. Unlike various methods in the

literature where dynamic compaction starts from the very beginning of test generation, in

the incremental approach, we use the benefit of random detections by fault simulation in

the initial region and cube merging to achieve a certain threshold coverage. Dynamic

compaction can be run-time intensive because a fault may be targeted multiple times if

the fault requires scan cells or primary input values that conflict with the existing values

of the inputs obtained from the previous test pattern generation. This can increase the

run-time if dynamic compaction procedure is performed from the beginning of test

generation. Therefore, in this method, cube merging is performed until threshold fault

coverage is reached in order to exploit the advantage of run-time of cube merging. The

threshold coverage is based on the fault coverage curve and the threshold coverage is set

to coverage slightly before the tail portion of the fault coverage begins. A random fault

ordering is used while targeting secondary faults.

The backtrack limit for secondary faults is set to be less than the primary fault

backtrack limit in order to avoid spending too much time on test generation for the

www.manaraa.com

33

3
3

secondary faults. This is based on average backtrack limit for all the faults for which test

is generated when cube merging is used.

The number of secondary faults numsec to be targeted with a primary fault is

limited and is specified as a user defined parameter. numsec is a function of the average

time spent per backtrack, the target test pattern compaction and run time targeted for the

entire test generation. numsec is calculated as follows.

#Number of secondary faults targeted per primary fault (2X-

t)/(#Passes*T_avesec) where 2X is the time that can be afforded for entire test

generation, and X is the time taken for test generation when only cube merging is used

for test compaction.

numsec is a lower bound on the number of secondary faults to be targeted along

with a primary fault. Typically the number of faults targeted per primary fault is set

slightly higher than the number obtained by the above equation.

2.3.4 Improving run time by Static Untestability Analysis

The run time with basic dynamic compaction described above is some times more

than twice the time when only cube merging is used for test compaction. The long run

www.manaraa.com

34

3
4

times can be attributed to targeting faults that cannot be either activated or propagated

because of controlling values on the side inputs of the d-frontier gates. In order to address

the long run time, the next fault that is picked randomly can be statically tested for

activation condition violation and for any x-path blocks during fault propagation. This is

accomplished by saving the values of gates during test generation whenever a test is

generated. These values are used to check for activation violation check, for instance let a

fault on line n be n stuck at 0 and the stored value for the previously generated test was 0,

then if the fault n stuck at 0 is targeted with the scan cell and primary input values set by

the previous test, then line n will attain a value 0 and the fault cannot meet its activation

condition. Therefore, by looking up the stored value for the previous test, it can be

determined if the fault can be activated or not and thus can help reduce the run time by

avoiding targeting faults that cannot be activated. The check for activation violation is

performed for the timeframes in a test cycle when the fault can be activated.

The check for x-path blocks is done in a similar manner by performing depth first

search up to a few levels from the fault site and check for any controlling values on side-

inputs that can block the fault effect propagation. X-path check is limited to a few levels

only in order not to spend too much time in the depth first search traversal which may

itself cause longer run-times. The traversal for x-path along a path stops either if the

maximum number of levels is reached or if there is an x-path block or if there is a

sequential gate. The traversal stops at a sequential gate because, depending on the clock

of a sequential gate, the fault can be propagated in a later frame if not in the current

timeframe.

2.3.5 Reasoning Analysis to drop redundant faults

Apart from the activation violation and x-path blocks, another factor that impacts

the run time is redundant faults. Redundant faults are untestable faults and of two types –

circuit untestable and constraint untestable [56]. Circuit untestable faults are redundant

www.manaraa.com

35

3
5

faults and a test cannot be generated for such faults because of the nature of the circuit.

Constraint untestable faults are untestable due to constraints set for ATPG which are

conservative because the design is not mature enough. These constraints may be relaxed

later by a DFT engineer to improve the test coverage. Test coverage is different from

fault coverage. Test coverage accounts for the redundant faults and hence the number of

redundant faults is subtracted during the calculation of coverage, whereas fault coverage

is calculated for total number of faults. During dynamic compaction, when a redundant

fault is targeted there is no test generated with the constraints set by the previous test

generated and the fault is targeted again with another primary fault. Thus, a redundant

fault can be potentially targeted multiple times which can lead to longer run times. We

present a reasoning analysis approach based on the conflict driven learning approach in

[15, 56]. For completeness purpose, the method of [15] is briefly described here. The

conflict driven learning uses an AND/OR reasoning framework that is built during fault

propagation and justification. During fault propagation, the fault effect D that needs to be

propagated through the fanouts of a d-frontier gate form an OR relationship for the fanout

gates since one of the fanouts is chosen for propagation. There exists an AND

relationship between the parent d-frontier and the selected d-frontier since the fault effect

needs to be propagated through both the gates in order to reach an observed point. The

AND relationship holds true even for the off-path J-frontiers that need to be justified in

order to propagate the fault through the D-frontiers. Every time a gate is assigned a value,

a graph node is created for the gate corresponding to a timeframe. The graph nodes have

AND relationship as described previously. OR choices do not have a graph node created

and are maintained separately in a stack. Implication graph is created only for the portion

of the circuit that is active during test generation so as to keep the size of the implication

graph small.

www.manaraa.com

36

3
6

Figure 2.7 An example circuit showing a redundant fault

The implication graph is used to identify the set of implicants that imply a value

on a gate. Traversing backward from a given node in an implication graph, the set of

implicants that imply a specific gate value on a node can be identified. Whenever a

conflict scenario occurs during test generation, backward traversal is performed starting

from the conflicting nodes to identify the set of implicants that cause the conflict. During

the backward traversal when a conflict occurs, the traversal begins from the conflicting

nodes and stops at a node if it is a decision node or an implication node at a decision level

lower than the highest decision level of the conflicting nodes. The backtrack process

proposed in [15] is non-chronological and backtracks are based on reasons collected for

conflicts. For a j-frontier J, let R be the set of implicants for J. Let C1, C2,…., Cn be the

choices to justify J. If all the choices lead to conflict and let Ri be the corresponding

reason set for the conflict at Ci, then backtrack can be made to decision level l where, l is

the maximum decision level among all the decision levels of nodes in the reason set {R,

R1, R2, …., Rn }.

I1

I2

I4

I3

Z1

Z2

Z3

A

B

C

E

D

F

G

X`

a1

a3

b1

b2

a2

b3

c2

c3

c1

d1

d2

sa1

www.manaraa.com

37

3
7

Consider d1 stuck at 1, a redundant fault in the circuit shown in Figure 2.7. The

implication graph generated during test generation for d1 stuck at 1 fault is as shown in

Figure 2.8. It can be seen that there is a conflict on gate E and while tracing back from

the conflicting nodes according to the conflict diagnosis procedure in [15], the reason set

only consists of node N1 since all the nodes are implication nodes and of the same

decision level. The first node is not considered since it is the reason for activation of the

fault. Therefore, a redundant fault has no reasons in conflict diagnosis process and this

can be used for the benefit of dynamic compaction to drop redundant faults determined

during test generation.

Figure 2.8 Implication graph generated during ATPG for testing d1 s-a-1

During incremental dynamic compaction, the primary input and scan cell values that are

specified by previous test are attributed with a special property in order to determine if a

www.manaraa.com

38

3
8

fault is untestable in the presence of the constraints set by the previous test or if the fault

is untestable due to other reasons like pin constraints or functional constraints, etc.

Consider a primary fault a1 stuck at 1 in Figure 2.7, for which test is generated by

specifying I2=0 and I1=0. These specified primary values are applied as constraints to

generate a test for the secondary fault B stuck at 0. It can be observed that B stuck at 0

requires I2=1 and I3=1 and since I2=1 conflicts with the already specified value I2=0, a

test cannot be generated for B stuck at 0 under the input values specified by previous test.

In order to differentiate the constraints specified by dynamic compaction from other types

of constraints, let a dummy node of type DYN to represent dynamic compaction

constraints be added as a fanin to the specified primary inputs I2 and I1 as shown in

Figure 2.9.

The implication graph is shown in Figure 2.9. It can be observed that the backtrack

procedure eventually ends in the node I2=0 and the reason for the fault B stuck at 0 being

untestable is due to the constraints set by the process of dynamic compaction.

Figure 2.9 Implication graph generated during incremental dynamic compaction

www.manaraa.com

39

3
9

The reason set R consists of the DYN node. In case fault d1 stuck at 1 which is a

redundant fault is targeted as a secondary fault with primary fault a1 stuck at 0. The

backtrack process will be independent of the dynamic compaction constraints and the

reason set R will be empty. This can be used to drop redundant faults from being targeted

again with a later primary fault.

2.3.6 Automatic Identification of Parameters for Dynamic Compaction

The main drawback of the above proposed procedure is that the various

parameters for enabling dynamic compaction namely – threshold, secondary fault

backtrack limit and number of faults to be targeted per primary fault are calculated

manually and need to be provided to ATPG. This requires that first the test generation

tool needs to be run with the cube merging method of compaction and then the

parameters need to be evaluated, which is time consuming. The calculation of the

parameters can be automated and can be evaluated during initial cube merging and the

parameters can be identified on the fly during test generation.

In the automated method proposed here, cube merging is performed until a

threshold is reached in order to exploit the advantage of run-time of cube merging. The

decision point or the threshold is based on ratio of running average of unique detects

(detections on faults simulation) and running average of unique targeted faults. Unique

detections constitute the faults that are detected during fault simulation once the

compacted pattern in the bin is to be fault simulated. These unique detections exclude the

faults, which constitute the faults detected by the patterns of the merged test cube that is

fault simulated. Therefore, the unique detects only include the detections that are

unintentionally detected. The unique targeted faults are the faults corresponding to a

merged pattern in a bin that is to be fault simulated. These faults consist of the ones that

have not been detected yet and exclude the faults that were detected already due to fault

www.manaraa.com

40

4
0

simulation of other patterns. This can happen when pattern in some other bin is fault

simulated and the pattern accidentally detects additional faults, which belong to the

current bin. The motivation to use this ratio is that it is more beneficial to use dynamic

compaction in the region where the number of unique collateral detects with respect to

the targeted faults is low. The ratio conceptually means that if the unintentional

detections upon fault simulation per pattern fall to a small number, the tail region of the

fault coverage curve is reached. This is when the patterns are not compatible and it is

required to generate compaction friendly patterns and dynamic compaction is enabled

beyond this threshold. In the proposed method we set the target ratio to 2. If the ratio is

less than or equal to 2, dynamic compaction is enabled. In some cases, the number of

patterns on the tester is restricted due to memory limitations. In such situations, the target

ratio might not be reached yet. In such cases, dynamic compaction is enabled at 60% of

the number of patterns specified to the tool.

 Backtrack limit for the secondary faults is calculated as the average of backtracks

used for all the faults for which test is found during cube merging. Once the threshold is

reached, dynamic compaction is enabled and the secondary backtrack limit is set as

described. Secondary fault backtrack limit is incremented each time a new primary fault

is tried until the average backtrack+50% of average is reached.

The number of secondary faults to be targeted with a primary fault is to be

restricted because this could impact the run-time for overall ATPG. This is determined

during the initial portion of the test generation when cube merging is performed. This is

given by the equation below.

#faults per pass = factor * (# Total faults targeted)/(# Test Patterns)

The ratio of total faults targeted and the number of test patterns gives an

approximate estimate of the number faults that need to be targeted per primary fault or

www.manaraa.com

41

4
1

per test pattern. The secondary faults targeted along with a primary fault, constitute of the

faults of three categories –

 Test found faults – For these faults test is found with the current primary fault

 Aborted faults – Test generation is not successful for these faults because they

are aborted due to limited backtrack limit

 Redundant faults – Test cannot be generated for these set of faults because

these faults are untestable in the presence of the constraints set by the previous

faults targeted with the current primary fault

The Factor in the equation scales the ratio of the total faults targeted per test pattern and

is required because towards the tail end of the curve, the number of faults that need to be

targeted is large in order to achieve test size reduction because the probability of

generating a test in the tail is reduced because of the nature of the faults which are hard-

to-detect. The Factor is set to 10 in our experiments.

During the initial phase when only cube merging is performed, the running

average of the number of test patterns compave compacted or merged in the written out bin

is computed. Once the threshold ratio is achieved, dynamic compaction is enabled. All

the patterns in the bins that have compacted greater than or equal to the running average

compave, number of patterns, are written out and fault simulated. All the patterns in the

remaining bins are emptied and are not fault simulated because the patterns are not

optimally compacted.

Apart from these three parameters which determine the amount of compaction

achieved during dynamic compaction, the number of bins used during cube merging

determines the compaction achieved during the initial phase of test generation. As the

number of bins is increased, the compaction achieved also increases because there is

greater possibility of finding a compatible bin or an empty bin. Therefore there is less

frequent writing out of patterns from the bins and in turn greater compaction is achieved.

www.manaraa.com

42

4
2

However, as the number of bins increases, the run-time also increases because it takes

longer to identify a compatible bin.

2.4 Experimental Results

The incremental dynamic compaction technique was performed on industrial

designs and the following experiments were conducted – (i) Comparison of basic

incremental dynamic compaction over cube merging technique and (ii) Comparison of

dynamic compaction with static untestability analysis and cube merging technique. The

size of the various designs is shown in Table 2.3.

2.4.1 Comparison of basic incremental dynamic compaction over cube merging technique

The CONCAT procedure of [15, 56] is the underlying conflict learning procedure

used in our experiments. The experiments are performed on industrial circuits and the

results are shown in Table 2.4. Column 2 and 3 of Table 2.4 gives the test set sizes with

cube merging method and with incremental dynamic compaction method respectively.

Columns 4 and 5 represent the run times for the designs when run with cube merging

method and with incremental dynamic compaction method respectively. Both the test set

size and run-time is given at a given fault coverage. The number of scan operations is

limited for the experiments and is curtailed at 10000 for smaller designs and 3000, 5000

for larger designs. The percentage decrease in test size when incremental dynamic

compaction is compared with cube merging technique is specified in column 6. The run

time for incremental dynamic compaction is specified as a multiple of the run time for

cube merging method and is specified in column 7. The maximum coverage for given

limit on scan operations is given in Table 2.5. Column 2 is the maximum coverage

www.manaraa.com

43

4
3

Table 2.3 Approximate size of designs

Design Gate Count

A 350k

B 5600k

C 850k

D 6700k

E 6200k

F 10000k

G 1200k

H 6000k

I 6500k

Table 2.4 Results for incremental dynamic compaction vs. cube merging technique

 Test Size Time (hours)

Design CubeMerging DynComp CubeMerging DynComp %TestRed Time(X)

A 10000 7899 2.6 3.55 21.02 1.37

B 10000 6336 66.25 71.25 36.64 1.07

C 10000 6486 10.83 38.11 35.14 3.52

D 5000 3408 212.17 289.21 31.84 1.36

E 3000 2218 109.31 144.65 26.06 1.32

F 5000 3157 271.5 342.16 36.86 1.26

G 7598 6885 7.45 30.68 9.38 4.11

H 4025 2874 26.68 75.06 28.59 2.81

I 4772 4021 60.5 82.58 15.73 1.36

www.manaraa.com

44

4
4

Table 2.5 Maximum coverage achieved with cube merging and incremental dynamic

compaction

Table 2.6 Comparison of BDR and BDR+SUA approach

Design Cube Merging DynComp

A 91.48 93.23

B 90.65 93.40

C 94.52 95.53

D 76.59 77.36

E 77.92 80.35

F 84.49 86.15

G 85.52 85.53

H 73.52 73.82

I 70.22 70.40

 Test Size Time (hours)

Design BDC BDC+SUA BDC BDC+SUA TimeRed(%)

A 7899 7826 3.55 3.63 -2.25

B 6336 6305 71.25 65.83 7.6

C 6486 6502 38.11 35.43 7.03

D 3408 3379 289.21 316.38 -9.39

E 2218 2196 144.65 157.03 -8.55

F 3157 3129 342.16 323.21 5.54

G 6885 4890* 30.68 14.3 -

H 2874 3286* 75.06 81.46 -

I 4021 3336* 82.58 73.77 -

www.manaraa.com

45

4
5

It can be observed that the basic dynamic compaction approach gives test pattern

size reduction upto 36% with incremental dynamic compaction and the run time is upto 4

times the run time with cube merging technique. The target scan count reduction set for

these experiments was 20%. The number of secondary faults to be targeted per primary

fault is determined based on the equations described in previous section. The threshold

fault coverage is determined based on the fault coverage curve for the cube merging

technique. The secondary fault backtrack limit is based on average backtrack for testable

faults.

2.4.2 Comparison of basic incremental dynamic compaction with static untestability

analysis over cube merging technique

The experimental results for the runs with basic incremental dynamic compaction

(BDC) and basic incremental dynamic compaction with static untestability analysis

(BDC+SUA) is shown in Table 2.6. The test set sizes with BDC and BDC+SUA is

shown in columns 2 and 3 respectively. Columns 4 and 5 show the test run times with

BDC and BDC+SUA. It can be seen that the static untestability analysis helps in run time

reduction for some of the smaller designs but adds to the run time for larger testcases.

This is attributed to the additional time involved in saving the values of gates whenever a

test is found, which can be large for larger circuits. In addition to this the depth first

search traversal also is expensive in terms of time for larger circuits. The entries in

column 3 that are star marked, is to indicate that the fault coverage is 0.3%, 0.5% and

0.07% less than the cube merging fault coverage.

2.4.3 Comparison of incremental dynamic compaction with automatic parameter

identification method with cube merging technique

Since the basic dynamic compaction approach requires the parameters for

dynamic compaction namely the threshold, number of secondary faults per primary fault

www.manaraa.com

46

4
6

and the secondary fault backtrack limit to be provided to the tool manually, we proposed

an automatic method of identification of parameters for dynamic compaction (API).

Table 2.7 compares the test set size and run time obtained with API with cube merging.

The number of bins used for cube merging and dynamic compaction is 32. The test set

sizes with cube merging and API is shown in columns 2 and 3 respectively. Columns 4

and 5 show the test run times with cube merging and API respectively. The reasoning

analysis is used to drop secondary faults that are identified to be redundant during

dynamic compaction. This avoids the redundant faults from being targeted again and

reducing run-time over head. From the results it can be observed that the test size

reduction achieved is approximately 30% and the run-time is 2X times the run-time it

takes for cube merging. From the table it can be seen that for testcases G and I, the fault

coverage drops by 0.5% and 0.6%. Upon investigation, it was found that the difference in

fault coverage was because of the faults detected accidentally during fault simulation.

When the patterns are fault simulated, a sequence of patterns is fault simulated and

therefore there are accidental detections of faults that are activated and propagated across

test patterns. These are the faults for which single test cycle is not sufficient and require

more than one test cycle to be detected.

When the number of bins is increased, the compaction achieved when cube

merging is used typically increases. This happens because there is greater possibility of

finding a compatible bin or an empty bin. Therefore the writing out of patterns from the

bins is delayed and in turn greater compaction is achieved.

However, as the number of bins increases, the run-time also increases because it

takes longer to identify a compatible bin. When the automatic parameter identification

method of dynamic compaction was used with large number of bins i.e. 1000 bins, the

run-time associated with dynamic compaction was very large because the number of

number of faults per primary fault that is selected is very large because as the number of

www.manaraa.com

47

4
7

Table 2.7 Comparison of results for API vs. cube merging technique for 32 bin size

 Test Size Time (hours)

Design CubeMerge Auto CubeMerge Auto %TestRed Time(X)

A 10000 5962 2.6 8.5 40.39 3.26

B 10000 6574 66.25 69.63 34.26 1.05

C 10000 6978 10.83 17.36 30.22 1.6

D 5000 3386 212.17 249.78 32.28 1.11

E 3000 2073 109.31 304.75 30.9 2.78

F 5000 3417 271.5 333.23 31.66 1.22

G 7598 4158 7.45 26.5 - -

H 4025 3702 26.68 44 8.02 1.64

I 4772 2316 60.5 90.23 - -

Table 2.8 Maximum coverage achieved with API and cube merging for 32 bin size

Design Cube Merging Auto

A 91.48 95.82

B 90.65 93.64

C 94.52 95.61

D 76.59 77.34

E 77.92 81.11

F 84.49 86.44

G 85.52 85.00

H 73.52 73.71

I 70.22 69.67

www.manaraa.com

48

4
8

Table 2.9 Parameter selection for API method for 32 bin size

bins increases, the number faults targeted or resolved per test pattern is really large

compared to the smaller bin size case. Another factor that adds to run-time is that when

dynamic compaction is enabled, all the patterns in the bins that have compacted greater

than or equal to compave are fault simulated and the patterns in the remaining bins are

discarded because the patterns in those bins are not optimally compacted. It was observed

that a very small fraction of the patterns were actually fault simulated and most of the

patterns in the bins were discarded. This implies that the effort spent in generating a test

for those faults is lost and those faults are targeted again during dynamic compaction. In

order to account for this, we use smaller bin size of 256 for the initial phase of test

generation where only cube merging is used. Therefore, lesser number of patterns in the

bins is discarded and lesser number of secondary faults per primary fault are targeted.

Table 2.10 compares the performance of API method when run with 256 bins

against cube merging when run with 256 bins and 1000 bins. Columns 2 and 4 are the

number of test patterns when cube merging is used with 256 bins and 1000 bins

respectively. Columns 3 and 5 are the number of test patterns obtained when API is run

Design Threshold #Secbkt #SecFaults

A 85.46/3780 5 50

B 89.29/6000 8 180

C 91.76/4898 73 90

D 75.22/2617 23 930

E 75.91/1800 50 880

F 83.16/3000 5 450

G 81.82/2250 17 210

H 72.12/2341 46 190

I 67.22/1161 22 910

www.manaraa.com

49

4
9

Table 2.10 Comparison of results for API(256 bin size) vs. cube merging technique (at

256 and 1000 bin size base coverage)

 Test Size Time (hours)

Design
Cube@

256bin

s

Auto

@256

BCov

Cube

@1000b

ins

Auto

@1000

BCov

Cube@

256bin

s

Auto

@256

BCov

Cube

@1000b

ins

Auto

@1000

BCov

A 10000 7695 10000 7976 3.4 52.5 3.75 55

B 10000 6595 10000 7076 58.85 124.75 70 174.61

C 10000 7559 8731 7624 13.25 40.28 11.61 41.03

D 4976 3852 4462 3359 214.6 867.68 205.18 800.25

E 5000 3289 3000 3342 210.16 383.5 215.5 424.35

F 3000 2264 3000 2720 321.5 421.9 260.5 938.63

G 6669 - 6693 - - - - -

H 3323 2014 2795 2080 23.21 59.71 21.5 62.8

I 2045 - 1247 1513 28.81 - 26.18 232.66

with 256 bins at the fault coverage achieved when cube merging is run with 256 bin size

and 1000 bin size respectively. Columns 6 and 8 represent the time required for cube

merging when run with 256 bins and 1000 bins respectively. Columns 7 and 9 give the

time required when API is run with 256 bins at the fault coverage achieved when cube

merging is run with 256 bin size and 1000 bin size respectively. It can be observed that

the compaction achieved is >20% in most of the cases except testcases G and I. In case of

G the fault coverage is 84.53%, the reason being the same as discussed previously.

However, in the case of testcase I, when cube merging is run with 1000 bins, the fault

coverage curve is steep and there is no tail portion. In this case dynamic compaction is

not required because the cube merging method provides desired compaction and the

motivation for the proposed method is to address long tail portion of the fault coverage

www.manaraa.com

50

5
0

Table 2.11 Maxim Fault Coverage, Test size reduction and run-time overhead achieved

with API and cube merging

curve and the design does not have a tail region. Table 2.11 tabulates the fault coverage

achieved with cube merging method with 256 bin size, 1000 bin size and API method

respectively. The later columns give the test set size reduction and run-time overhead

compared with cube merging when 1000 bins are used.

2.5 Conclusion

In this work, we propose an incremental dynamic compaction approach that

incorporates cube merging method with dynamic compaction enabled after certain

threshold is reached. The threshold is determined internally during test generation and

dynamic compaction is enabled. The parameters for dynamic compaction are determined

on the fly during test generation. This approach is very efficient in test pattern count

reduction. When small bin size of 32 is used, there is approximately 30% compaction

achieved with the proposed incremental dynamic compaction method, with a run-time of

 Cube Coverage @256 bins Cube Cov @1000 bins Cube Cov

Design 256b 1000b Auto %ScanRed Time(X) %ScanRed Time(X)

A 96.32 96.52 97.2 23.05 15.44 20.24 14.66

B 91.33 92.01 94.06 34.05 2.12 29.24 2.49

C 95.53 95.55 95.85 24.41 3.04 12.67 3.53

D 77.20 77.04 77.51 22.58 4.04 24.71 3.9

E 80.52 80.72 83.4 34.22 1.8 33.16 1.9

F 85.06 86.09 86.43 24.53 1.3 9.33 3.6

G 85.28 85.28 84.53 - - - -

H 73.53 73.58 74.48 39.39 2.57 25.58 2.9

I 69.60 69.15 69.57 - - -21.33 8.88

www.manaraa.com

51

5
1

2X times the cube merging method. However, as the number of bins is increased, the run-

time increases when dynamic compaction is used, but the proposed method provides

greater than 20% compaction. Static untestability analysis is proposed to address long

run-time problem to avoid targeting secondary faults that could have activation conflicts

or x-path blocks. However, the method reduces the run-time in some cases and does not

benefit in some other cases. Reasoning analysis method which uses an AND/OR

reasoning graph is proposed which helps identify the cause for a secondary fault being

redundant during dynamic compaction. Redundant faults that are independent of the

constraints set by dynamic compaction are dropped and hence such faults are avoided

from being re-targeted and thus the unwanted effort required to re-target the redundant

faults is avoided.

The technique is effective in the fault coverage tail or designs with long fault

coverage tail where compaction friendly patterns are necessary for hard to detect faults.

www.manaraa.com

52

5
2

CHAPTER 3 PATH DELAY FAULT TESTING WITH SEGMENTED FAULT

MODEL

In this chapter we present a test generation methodology for path delay faults

suitable to testing multi-segment paths in partially scanned designs. In order to increase

the delay fault coverage of pseudo-robust tests we propose a methodology to divide full-

paths into sub-paths and generated patterns for sub-paths. Experiments conducted on

industrial designs using the generated path delay fault detection patterns show that the

generated patterns are more effective in identifying speed-path failures on silicon than n-

detect transition atpg patterns currently used for this purpose.

3.1 Introduction

 Due to increasing clock rate and scaling down of feature sizes, manufactured

devices are subject to delay defects which affect the functional operation of the design

when run at high frequency. Delay defects are mainly caused by process variations,

increasing clock rates, increasing chip density. The process variations may lead to failure

of device when run at higher clock rate for the specified time interval [33], however the

device may function correctly at lower frequencies. This type of defect is modeled as

delay fault. There are two types of delay fault models – lumped and distributed. Lumped

type delay faults are treated as point defects and are considered to be concentrated at a

gate output. Examples of lumped type delay fault model are transition faults and gate

delay faults. Transition fault model assume the delay defect to affect only one gate in the

circuit and the delay to be so large that the delay of any path passing through the fault site

exceeds the cycle time. Gate delay fault model assumes that the delay is lumped at a gate

in the circuit, however the assumption is that the delay on the gate only affects long paths

through the fault site. The advantage of lumped delay fault model is that the number

faults is linear in the number of gates in the circuit, test generation is relatively simple

www.manaraa.com

53

5
3

because traditional stuck-at tests can be used with initialization vectors. The limitations

of lumped delay fault model are that that since the fault model is based on the assumption

that the delay is concentrated at a gate, the test for these faults may fail to detect delay

faults resulting from a sum of several small delay defects. Distributed type delay fault is

considered to be distributed along the path which accounts for the cumulative process

variations. Example for distributed type delay fault model is path delay fault model. The

advantages of distributed fault model are that it models the impact of cumulative delay

variations, the tests for these faults can target critical paths of interest and can also target

gate or transition faults. The major drawback of distributed fault model is that the number

of paths in a circuit can be very large and the test generation process is relatively difficult

because the test generation involves sensitizing and satisfying necessary off-path

conditions in two time frames rather than one, which is the case for stuck-at atpg for all

the gates on the path.

The focus of the work is test generation for path delay faults in partial scanned

circuits and we propose a method by which the fault coverage of untestable paths in the

design can be increased by progressively generating patterns for smaller sub-paths when

pattern generation for a full path fails.

3.2 Preliminaries

Fault models are used to model physical defects so as to translate the problem of

fault analysis from a physical problem into a logical problem [5]. Fault modeling also

reduces the complexity as many different physical faults may be modeled by the same

logical fault. There are various types of fault models of which the delay fault model is

used in our work. A delay defect causes the delay of a path to exceed the clock period or

the cycle time. The slack of a path is defined as the difference between the designed cycle

time and the actual delay. When the size of the delay exceeds the slack of a path it leads

to incorrect values at the circuit output. There are two types of delay fault models:

www.manaraa.com

54

5
4

 Transition fault model:

Transition fault is a lumped delay fault model. In the transition fault model, the

delay is considered so large that any path passing through the fault site exceeds

the cycles time for the path [9]. A stuck at fault models the defect where a signal

line is stuck at a value 0 or 1 permanently. A transition fault’s behavior is similar

to a stuck-at fault, however it limited to a finite duration. A transition fault is a

gross delay fault where the propagation delay of all the paths passing through the

fault site exceeds the cycle time [34]. There are two types of transition faults –

slow-to-rise and slow-to-fall. There can be a maximum of 2N transition faults in a

circuit where N is the number of nets in the circuit. A two pattern test is required

to activate a transition fault, where the initializing vector sets the fault site to the

initial value and the final vector launches the transition. For a slow-to-rise

transition, the final vector is a stuck-at 0 test for the faulty line. Once the

transition is launched, it is propagated to an output. Consider the circuit shown in

Figure 3.1, where line e has a slow to fall transition fault. V1 = 11XX and V2 =

0x11 corresponding to inputs {a, b, c, d} is a two pattern test that detects the

slow-to-rise fault on line e.

Figure 3.1 Transition fault Model

e : STF

a : 10

b : 1x

c : x1

d : x1

f : x0
o : 10/11

www.manaraa.com

55

5
5

 Path delay fault model:

The path delay fault models distributed failures, which are typically caused by

statistical variations in the manufacturing process. When the cumulative delay of

a path exceeds the clock period for the path, it can cause chip failure. A lot of

research has been done on various aspects of test generation and fault simulation

of path delay faults. A path delay fault is tested using a two pattern test. The

transition created by the test pattern is propagated along the path explicitly by

sensitizing every gate of the path and satisfying necessary off-path conditions.

The two popular ways in which a path can be sensitized are robust sensitization

and non-robust sensitization.

1) Robust sensitization:

In robust sensitization the path is sensitized independent of the delay on the off-

path inputs and the fault is detected even in the presence of delay on off-path

inputs [35]. It is ideal sensitization and is practically difficult to achieve. Consider

the path P = {A, C, E} shown in Figure 3.2. Signal lines A, C and E are the on-

path inputs of the path. Signal lines B, D and F are the off-path inputs of the path.

Figure 3.2 Robust Sensitization

The robust test to detect the path consists of a two pattern test - V1<S1>

and V2<01> for inputs A and B, where S1 represents stable 1 value and S0

represents stable value 0 in both the time frames. V1 is the initialization vector

A: 10

B: S1

C: 10

D: S0

E: 01

F: S0

O: 01

www.manaraa.com

56

5
6

which sets the initial value of the transition and V2 is the final vector which

launches the transition on the beginning of the path and activates the path delay

fault. The test detects the path delay fault at the output independent of delay on

the off-path inputs of the path.

2) Non-robust sensitization:

This assigns non-controlling values to the off-path inputs in the second vector of

the test. Transition along every gate of the path is not ensured. Test can be

invalidated by delays on off-path inputs under this type of sensitization [35]. Non-

robust sensitization is shown in Figure 3.3. Vectors <0X> and <11> form a non-

robust test for the path P. It can be seen that the test can get invalidated if the off-

path input F has a delayed 10 transition. Therefore non-robust tests do not

guarantee the detection of a path delay fault independent of delays in other parts

of the circuit.

Figure 3.3 Non-robust Sensitization

3) Pseudo-robust sensitization:

This ensures that the final value of the off-path inputs is non-controlling value in

both the vectors. This sensitization ensures transition on all the gates along the

path. Due to hazards the final values of the gates may not be stable. Hazards are

unwanted pulses or glitches that appear at internal signals or primary outputs and

A: 01

B: X1

C: 10

D: X0

E: 01

F: X0

O: 01

www.manaraa.com

57

5
7

are caused due to difference in delays along reconvergent signal paths when there

is transition at inputs [3]. There are two types of hazards – static and dynamic.

Static hazards are caused due to glitches in a steady signal [37]. Dynamic hazards

result from multiple changes on a signal before attaining the steady state [37]. The

test maybe invalidated in the presence of hazards on off-path inputs.

Figure 3.4 Pseudo-robust sensitization of AND gate for (a) Rising Transition (b) Falling

transition

Pseudo-robust sensitization of AND gate, for rising and falling transition on on-

path input shown by thick line is illustrated in Figure 3.4(a) and (b) respectively.

It can observed from Figure 3.4(b) that a test for a delayed falling transition can

be invalidated in the presence of a hazard on the off-path input. The output which

would be a delayed falling transition may have a delay free transition due to the

hazard on the off-path input. Throughout the proposed work, pseudo-robust

sensitization is used as robust sensitization is practically difficult to achieve.

3.3 Review of Previous Work

In this section, various test generation techniques that have been developed for

path delay faults in combinational as well as sequential logic circuits are discussed.

www.manaraa.com

58

5
8

3.3.1 PODEM based Test generation for Path Delay Faults

In [33] a five-valued logic system is proposed to generate robust deterministic test

patterns based on PODEM to detect path delay faults. The paper also gives the necessary

and sufficient conditions for a two pattern test to be a robust test for a given path. Robust

tests are important since the tests used to detect path delay faults should not get

invalidated in the presence of delays on other paths of the chip. The excessive delays are

caused by the device parameter variations due to random fluctuations during fabrication

of the circuits. Initially, robust tests with six-valued logic were considered in [36] to

detect path faults by two pattern test set, though the method of test generation for a given

transition path was not given. The five-valued logic system proposed in [33] is a subset of

the seven-valued logic system in [37].

Figure 3.5 An example circuit

www.manaraa.com

59

5
9

The five-valued logic values are {S0, S1, U0, U1, XX}. S1 (S0) represents

hazard-free stable value on a line in the circuit where the initial value and final value on

the line is 1(0). U1(U0) represents final value 1 of a signal line with initial value being 0

or 1 and there could be a hazard or transient between the two time frames. U1 (U0)

includes signal value S1 (S0). XX represents signal value being X in both initial and final

time frame. XX covers both U1 and U0.

Test generation for path delay faults in [33] is done similar to test generation for

stuck-at faults with the difference that the test generation for path delay faults has the

path determined upfront and so there is no need to determine path(s) to propagate the

fault effect to an observe point unlike stuck-at faults. The necessary values required for

the off-path inputs need to be justified. The PODEM based test generation approach in

[33] is explained with an example below.

Consider the circuit in Figure 3.5 for which a robust test needs to be generated for

path A-G-M-O with a falling transition at the input of the path by setting A to U0. The

three objectives necessary to generate a test are determined by the necessary off-path

conditions for lines b1, k1 and N which are required to have value S1, U1 and S1

respectively. These are ordered by priority as follows: set N to S1, b1 to S1 and k1 to U1.

These values are justified as in PODEM and during backtrace when primary inputs are

reached, only S1 and S0 values are tried if an internal line has an objective of S1 or S0 to

be satisfied. This reduces the number of branches in the decision tree from four to two

branches for a primary input. Only when the objective consists of setting a signal line

covered by U1 or U0, a U1 or U0 is tried on primary inputs.

The advantage of this method is that the logic system used facilitates generation

of minimum specified tests as a result of which the number of specified inputs is less and

hence leads to better compaction of test patterns for the set of path delay faults.

www.manaraa.com

60

6
0

3.3.2 DYNAMITE

DYNAMITE [35] is a test pattern generation system for path delay faults in

combinational or scan-based circuits. DYNAMITE stands for Delay Fault Oriented

Automatic Test Pattern Generation System and is based on the techniques proposed in

SOCRATES [23]. The test pattern generator is capable of generating robust tests using a

10-valued logic system as well as non-robust tests for path delay faults based on a 3-

valued logic. The major limitations of most of the path delay ATPG approaches is the

large number of paths in a circuit which grows exponentially with depth and hence only a

subset of paths can be targeted and needs to be determined prior to test generation in

some way. The authors propose a new path sensitization procedure which identifies large

number of redundant faults by single test generation attempt. The paths are stored in an

efficient data structure called path tree. The path tree structure is described below.

3.3.2.1 Path Tree Structure

As the number of paths in a circuit could be very large, the paths need to be stored

in an efficient manner. In [35], a tree data structure, in which portions of paths which are

common to many paths from a primary input to a primary output are stored only once

rather than allocating space for every path separately. According to the concept of path

tree data structure, a structural path is a path from signal s1 to sn

where the signal AND and signal si

does not pass through a fan-out stem or output signal of XOR or XNOR gate. SPI and SPO

is the set of all primary inputs and primary outputs respectively. corresponds to the

set of all fan-out stems and is the set of all output signals of XOR and XNOR gates.

Paths which are same structurally and only differ in the direction of transition at PI, is

accounted for by storing the direction of transition in the common leaf node.

www.manaraa.com

61

6
1

2.3.2.2 Path Sensitization Procedure

The path sensitization method is capable of processing large number of paths by

identifying redundant path delay faults in a single ATG attempt. Consider a functional

path

 that is picked from the path tree. The path P is partitioned into k

functional sub-paths based on the node sequence for the path P in

the path tree. Every sub-path Si of path P is sensitized consecutively based on robust or

non-robust test conditions. Once a sub-path is sensitized, implication is performed. If

there are no conflicts during the implication step, sensitization continues with the next

sub-path in the target path. If a conflict occurs during implication then all the sub-paths

identified to be redundant are dropped from the path tree and the first node of the node

sequence corresponding to the sub-path is flagged. Therefore, all functional paths which

contain sub-path with the flagged node and a transition that corresponds to the flagged

node can be dropped. Dropping sub-paths from the tree leads enables release of memory

which helps improve memory efficiency.

A major drawback of this approach is the huge amount of memory required for

the path tree storage in case of large circuits.

3.3.3 Test Generation for Path Delay Faults in Non-scan Circuits

The authors in [37] propose a test generation method for path delay faults in

synchronous sequential circuits. In order to generate a test for a path delay fault, the

netlist model of the circuit under test is augmented with a logic block consisting of a pair

of flip-flops and a few combinational gates. The gates in the logic block are driven by

signals driving the inputs of the on-path gates of the path. The path delay fault is test by

testing for a single stuck at fault in the logic block. The stuck-at fault in the block is

activated and the fault effect is latched into the destination flip-flop once all the signals

on the path are set in the states required for the test. Once the fault is activated, the fault

effect is propagated to an observe point. Thus the test pattern sequence generated for the

www.manaraa.com

62

6
2

Figure 3.6 Testing for path delay fault [37]

stuck at fault performs initialization, path activation and fault propagation required for

testing the path delay fault.

The path delay fault model used in [37] is similar to the one given in [38]. A path

starts from a primary input or a flip-flop and ends at either a primary output or a flip-flop.

Test generation consists of three phases:

1) Initialization:

During this phase the flip-flops are set in the suitable states required for later phases

by applying an initializing sequence. The initializing sequence v0 to vi as shown in Figure

3.6 from [37] brings the circuit into a known state. At the end of the initialization phase,

the flip-flops are set to states necessary for path activation. The clock is run at a slower

rate so as to ensure that the circuit is initialized irrespective of any delays.

2) Path Activation Phase:

The path is activated by creating a transition at the beginning of the path by the two

vectors vi+1 and vi+2. The path is mainly sensitized during the second vector and during

www.manaraa.com

63

6
3

the first vector, the path is sensitized only through those gates that propagate a non-

controlling value similar to that in [33]. Once vi+2 is applied, the flip-flops are clocked at

the rated clock period. If there exists a delay on the signal arriving at the input of the flip-

flop that exceeds the rated clock period, the value latched in the flip-flop is a faulty value

otherwise the flip-flop latches the fault-free value.

3) Fault Propagation Phase:

The vectors vi+3, …. are propagation vectors that propagate the latched value in the

destination flip-flop of the path to an observe point. The propagation vectors are also

applied at a slower clock as the initializing vectors to ensure fault-free operation.

2.3.3.1 Test Generation Model

For a given path and transition, the netlist is modified in which a test to detect a

single stuck-at fault is generated which in turn detects the path delay fault. The stuck-at

fault functions as follows-

1) The activation of the stuck-at fault must happen only when the activation vectors

have been applied to the combinational logic. The initialization vectors precede the

path activation vectors.

2) The stuck-at fault should not interfere with the normal operation of the circuit. Once

the second vector for path activation is applied, the stuck at fault is activated and the

fault effect is injected into the destination flip-flop of the path.

3) Once the fault effect is latched in the destination flip-flop, the stuck-at fault should

have no effect on the circuit and should allow fault-free operation of the circuit during

the fault propagation phase

In order to test a path between two flip-flops, a logic block consisting of a few

combinational logic gates with two flip-flops are inserted into the circuit. A stuck-at 1

fault is introduced at the output of the added logic block. The fault effect from the stuck-

at 1 fault is inserted using an AND or OR gate depending on the direction of the

www.manaraa.com

64

6
4

transition. The AND or OR gate is inserted between the output of the combination path

beginning from the source flip-flop and the input of the destination flip-flop.

The test generation system uses three programs – a path generator that generates

the paths, a stuck-fault model builder that reads the path and builds two models for rising

and transition fault and STEED, a sequential test generator. STEED generates test for the

stuck-at fault and initialization sequence and the propagation vectors.

The main drawback of the approach is the complexity involved and is impractical

for very large sequential circuits as run-time is long due to page faults.

3.3.4 NEST: A Non-enumerative Test Generation Method

In [40], the authors propose a test generation technique for path delay faults that is

based on the method presented in [41] which generates tests for path delay faults of a

given circuit without explicitly enumerating the paths. The major challenge in path delay

fault testing is the exorbitantly large number of paths in the designs which in the worst

case can be exponential in the number of lines in the circuit. In [41], a labeling procedure

is used that assigns labels to appropriate lines in the circuit and counts the number of

paths and the number of faults detected. The method proposed is based on the fact that a

large number of path delay faults can be detected by propagating transitions robustly

through portions of the circuits, without enumerating all the paths through which the

transitions are propagated. The labeling procedure considers only single lines and not

paths. Sub-circuits with large number of paths going through them and which can be

tested simultaneously are identified. Test generation objectives are determined for every

sub-circuit identified. These objectives ensure that a large number of faults are tested by

the same test without having to enumerate the paths. Tests can be generated for paths that

go through new lines which ultimately lead to covering the complete path delay faults in

the design. By considering new lines in the design, only a number of faults equal to twice

the number of lines in the circuit are targeted.

www.manaraa.com

65

6
5

In order to detect a large number of faults, two lines l1 and l2 are selected in the

circuit such that the pair (l1, l2) has the maximum number of paths. Test generation

objectives to propagate transitions from l1 to l2 robustly through as many paths as

possible are found. Additional objectives are added to robustly propagate transition from

a primary input to l1 and l2 to primary output. Apart from these objectives, another

constraint imposed on the selection of l1 and l2 is to detect a large number of paths

between them by the same test. This however may not be possible always as there could

be odd and even parity paths due to inverters. Thus, instead of selecting line l1 that has

maximum number of paths to l2, the line l1 that has maximum of either odd parity or

even parity paths is selected. Once line l1 is selected for every line l2, the pair (l1, l2) that

has the maximum number of paths is chosen.

During test generation, a single path from l2 to l1 is traced back. The output of l2

is assigned a transition that allows all the inputs of the gate to be assigned a transition

based on Table 3.1. Therefore for g2 being an AND gate, a 0x1 transition is assigned. If

for a gate, only one of its inputs can be assigned a transition then an input that belongs to

the selected paths from l1 to l2 is chosen. Test generation objectives are collected while

tracing the path from l2 to l1 and if the objectives can be satisfied then they are stored.

Once l1 is reached, backtrace is done from l1 to the last gate where there exists a choice

among the inputs. A different input is selected and test generation objectives are

determined for the sub-path from the selected input to l1. This process continues until all

the paths from the decision point are checked and a decision point preceding it is selected

and the process is repeated. If a decision point is reached a second time, backtrace stops

there and hence each line is considered only once.

The major advantage of this approach is that the main drawback of the path delay

fault model which is the large number of faults that needs to be considered is overcome

by not having to enumerate all the faults. This method is very effective for highly testable

circuits.

www.manaraa.com

66

6
6

Table 3.1 Robust propagation requirements (output) [40]

Gate type Output transition

0x1 1x0

AND Any number of inputs Single input

OR Single input Any number of inputs

NAND Single input Any number of inputs

NOR Any number of inputs Single input

2.3.5 Segment delay fault model

In [42], the authors present a method to overcome the problem of testing critical

paths that are untestable. Critical paths in a circuit are paths with the largest delay and are

important for delay fault testing because a delay defect on such paths can cause a timing

violation on such paths. In general, very small number of critical paths is testable [42,

43]. In [42], the untestable critical paths are tested robustly by covering the delay defects

on the longest possible segments that are not covered by any testable critical path. The

path selection is based on fixing a threshold for a given circuit and selecting paths that

have length greater than the threshold. The threshold for each circuit is set such that there

are a reasonable number of critical paths for the circuit.

A functional segment is defined as follows-

Definition: A functional segment (segment) is a sequence of connected gates,

 where the gate g0 (gk) need not be a circuit primary input (primary

output), and is the transition on gate gi.

www.manaraa.com

67

6
7

Figure 3.7 Atpg Flow [42]

Given gate level netlist

Path Selection: Set of paths of length > Lmax

Find set of functionally irredundant
critical paths (FIRR)

Find set of robustly testable critical
paths(RT)

Set L = L0

SCU = Set of all segments of length L that
belong to critical functionally sensitizable

paths which are not part of RT

Generate robust tests for SCU and let TSL

be the set of segments of length L for
which tests are generated

RT = RT U TSL

L = L - d

www.manaraa.com

68

6
8

The delay D(S) of a segment S is

 . All segments are assumed to be of

fixed length for segment S, where is the number of gates in the segment S. A

path begins from a primary input and ends at a primary output. If all the paths that pass

through a segment S have a delay that exceeds the clock period, then the segment is said

to be faulty. The problem of low robust coverage can be overcome by generating tests for

uncovered segment which cannot be a part of any robustly testable. The overall flow to

increase robust fault coverage by targeting uncovered segments of untestable but

irredundant critical paths is shown in Figure 3.7.

The advantage of this approach is that a large number of paths for which robust

tests cannot be generated can be covered by robustly testable segments. These segments

implicitly cover more than 87% of the irredundant paths for ISCAS circuits in [42].

3.4 The Proposed Method

In this section, we propose an effective path delay pattern generation algorithm

for multi-segment paths in partial scan designs. The proposed method introduces the

concept of sustaining in order to sensitize a path which has intermediate sequential

elements between the source and destination gates of the path. We also propose a method

to increase the fault coverage for circuits which have low robust coverage by dividing the

paths into sub-paths and generating tests for the sub-paths.

3.3.1 Motivation

The objective of this research is to propose an effective path delay atpg method to

generate patterns for multi-segment paths. One of the applications of path delay patterns

is they can be used for finding speed paths in a design. In high performance circuits,

speed path debug is an important part of the design process in order to meet performance

requirements [44, 45]. Speed paths are the frequency limiting paths identified during

debug. Based on the causes of speed path failures the design practices can be improved.

www.manaraa.com

69

6
9

Functional test patterns are used by debug engineers to identify speed paths in the design

and provide accurate results. However, generation of functional patterns is expensive and

the application cost is also high because the number of patterns is large and requires

functional testers. Speed paths are identified by shrinking the clock period of each

individual test cycle run for the failing test. This helps identify critical clock cycles when

the shrinking of the clock causes failure. The use of functional test patterns may be time-

consuming since the functional test patterns are very long and it might take many cycles

to reach an observable node. It is important to identify the causes of speed failure so that

the designers can develop strategies for better power and performance.

The various methods to test for speed paths are using functional patterns, n-detect

transition patterns, path delay patterns. Since usage of functional patterns is not feasible

due to the above reasons, the industry is interested in alternate methods to identify speed

paths. One alternate method is to use n-detect transition tests. The disadvantages of n-

detect transition atpg are that the size of the test pattern set can be very large and n-detect

transition may or may not target critical paths in the design. Transition atpg also has the

disadvantage that it may sensitize paths which are not critical and may lead to wrong

paths being identified as speed paths. All these reasons motivate us to generate path delay

patterns for speed path debug.

In the previous section various test generation methods for path delay faults were

reviewed. It has been observed that it is challenging problem to sensitize a path

consisting of sequential gates. In [37], it was seen that the method proposed consisted of

inserting a complex logic block into the circuit to generate tests for paths in sequential

circuit beginning from a flip-flop and ending in a flip-flop. In the work we present here,

we propose a simple path sensitization approach that can be used to generate pseudo-

robust tests, which are near robust tests and will be discussed in the next section. In the

circuits today, there are multiple clock domains and thus source and destination latches of

a path could be controlled by clocks of same or different domain. Assuming that a path

www.manaraa.com

70

7
0

can be represented as a set of contiguous segments where a segment begins at a

sequential boundary (with the exception of the first gate of the path which can be a

primary input or combination gate), the issue of sensitization in multiple clock domains

can be handled by sustaining the previous segment until the latch of the next segment

becomes transparent i.e. when the clock is turned on.

The contributions of the work are:

1) In this work we present a path delay ATPG methodology as described above

and compare the performance of the patterns generated by path delay ATPG

with patterns generated by n-detect transition ATPG on silicon.

2) The coverage for some designs is still low, so we also propose a method by

which the fault coverage of a design can be increased by dividing the paths

into sub-paths and generate test for the sub-paths.

3.3.2 Test Generation Methodology

In this section the main procedures for test generation are described and we

describe the path sensitization conditions and path sensitization approach.

3.3.2.1 Preliminary:

Path Definition:

In this section we define a path model and type of sensitization used in this work.

A path P is defined as, , where P is a set of an ordered set of

segments . A segment is an ordered set of gates, and

starts with a sequential element and ends at the gate driving the next sequential element.

The first segment starts at a combinational element or a primary input and the last

segment ends at any gate. An example for a path is shown in Figure 3.8. The path is

shown as highlighted in the Figure 3.8. The path consists of segments S1 and S2.

Segment S1 consists of latch L1 followed by gates G1 and G2 and since L2 is a

www.manaraa.com

71

7
1

sequential it belongs to a different segment S2. S2 consists of latch L2 followed by gates

G3 and G4. For combinational circuits a path can only have one segment whereas a

sequential circuit could have one or more segments. The on-path inputs to the path are a,

b, d, f, g and i. The off-path inputs of the path are clk1, c, e, clk2, h and j. A path can be

sensitized by launching a transition at the beginning of the path and satisfying necessary

off-path conditions specified by type of sensitization.

Figure 3.8 Example path delay fault

The different ways in which a path can be sensitized are robust sensitization and

non-robust sensitization. We described pseudo robust sensitization previously, which has

slightly relaxed conditions than robust sensitization and more stringent conditions than

non-robust sensitization. We use pseudo-robust sensitization in this work.

3.3.2.2 Overall Path delay ATPG Flow

Path delay ATPG consists of three steps – path activation, path sensitization and

fault propagation. Path activation creates the required transition on the first gate of the

first segment or the first gate of the path. Once the transition is set on the output of the

first gate of the path, the path is sensitized by assigning necessary values to the off-path

www.manaraa.com

72

7
2

inputs depending on the type of sensitization. Once all the gates of the path are sensitized,

the fault is propagated to a primary output or scan cell using sequential ATPG. The

overall test generation flow is shown in Figure 3.9.

Figure 3.9: Overall Test Generation Flow

3.3.2.3 Path Sensitization

Once activation is completed, the path sensitization begins and the transition from

the first gate of the first segment is propagated to the end of the segment or end of the

path. Once the last gate of the last segment is sensitized the path sensitization is

complete. In other words, path sensitization is achieved by sensitizing all the segments of

the path. A segment is said to be sensitized if all the gates of the segment are sensitized.

In turn a gate is said to be sensitized if the sensitization at the input of the gate is

successfully propagated to the output of the gate under necessary off-path conditions. A

gate that requires necessary off-path assignments to be made is called a p-frontier and is

described below.

Path

Activation

Path

Sensitization

Fault

Propagation

www.manaraa.com

73

7
3

3.3.2.3.1 P-frontier

If a gate needs to be assigned appropriate off-path inputs either in previous or

current frame, it is called a path frontier gate or p-frontier gate. A combination gate is a

p-frontier if atleast one of the inputs is sensitized and the output of the gate is not

sensitized yet and none of the off-path inputs prevents from propagating the transition

from input of the gate to output of the gate. A sequential gate is a p-frontier if the output

is not sensitized yet and one of the inputs is sensitized and clock is unknown.

Sensitization of the path is achieved by assigning proper off-path inputs to all p-frontier

gates. The pseudo-robust sensitization of AND, multiplexer and D-latch gates are

discussed below:

1) Pseudo-robust sensitization of AND gate:

For a rising transition at the on-path inputs as shown in Figure 3.10(a), the final

value of the off-path input should have a non-controlling value, whereas for a falling

transition at the on-path input, the off-path input requires to have non-controlling value in

both the first and second timeframes. Unlike robust sensitization where stable value is

required on off-path input, pseudo- robust sensitization requires the off-path values to be

the same in previous and current time frame. The pseudo-robust conditions for NAND,

OR/NOR gates are similar and are not shown here.

Figure 3.10: Pseudo-robust conditions for AND gate

a) rising transition and b) falling transition

www.manaraa.com

74

7
4

Figure 3.11 Pseudo-robust conditions for MUX gate

a) data pin on-path and b) control pin on-path

2) Pseudo-robust sensitization of MUX gate:

The pseudo-robust sensitization of a multiplexer when the data pin is on-path is

shown in Figure 3.11(a). When input D0 is on-path and is sensitized, i.e. the gate driving

the fanin-pin of the multiplexer is sensitized, then the control input should be 0 in the

current frame and either 1 or 0 in the previous time frame. Inputs D1 and control pin are

off-path. When the value on control pin is 0 in the previous and current time frames,

input D0 is selected in both the time frames. Thus the delayed transition is observed at

the output of the multiplexer. In this case the value on D1 has no impact on the output

since D1 is not selected. The initial value of the transition can also be obtained from the

off-path input, but the final value should be obtained from the on-path input. Therefore,

when the control selects input D1 in previous time frame, the initial value at the output of

the multiplexer should be set by input D1. When the control input has a delay free

transition, it correctly sets the initial value of the transition at the output in the previous

time frame and the delayed transition of the D0 input is observed at the output when

control pin switches to 0 in current time frame. If there occurs a delay on control input,

the initial value should still be set at the output. This is achieved by setting the same

initial value of transition 0 on input D1 in both the timeframes.

When the control input is on-path, and D0 and D1 are off-path inputs, consider a

01 transition on the control input. The pseudo-robust condition of a multiplexer when the

control pin is on-path is shown in Figure 3.11(b). The initial value of the transition at the

www.manaraa.com

75

7
5

output is set by the D0 input as the control input selects D0 in previous time frame. So

D0 should have the initial value of the transition 0(1). The final value of the transition at

the output is set by the D1 input as the control input selects D1 in current time frame.

When there is a delay on control input the value still remains 0 in the current time frame

and thus selects input D0. So the output should still have the initial value of the transition

and so the value of D0 should be maintained in both previous and current time frames.

3) Pseudo-robust sensitization of D-latch gate:

The pseudo-robust conditions for sensitizing a D-latch can be explained with an

example shown in Figure 3.12. In this work we only evaluate sensitization conditions for

the case when the data pin is on-path.

a) Data pin is on-path:

When the data pin is on-path, the gate can be sensitized under the following

conditions:

i) When data pin is sensitized, i.e. the data input has a transition and the fanin input gate

is sensitized in second frame, the gate can be sensitized if the clock is turned on in the

second time frame and thus the gate has a transition at the output.

ii) If the data input is sensitized in both the timeframes and has same value in the

previous and current time frame and the output of the gate has a transition when the

clock turns on in current frame (clock is off in the previous frame in this case).

iii) If data pin has no transition and gate was sensitized in the previous time frame, the

gate can be sensitized.

0

1

1

1

www.manaraa.com

76

7
6

Figure 3.12 Pseudo-robust sensitization of D-latch for rising transition at data pin

Cases ii and iii will be explained in the next section. The above conditions for

sensitizing a gate when the data pin is on-path is shown in Figure 3.12 (a), (b) and (c)

respectively.

3.3.2.3.2 Sustaining

In the circuits today, there are multiple clock domains and thus source and

destination latches of a path could be controlled by clocks of same or different domain. In

addition to this, critical paths in a design may not be limited to latch to latch or flop to

flop and can include more than one sequential along the path. In order to propagate the

sensitization from one segment (S1) to the following segment (S2), the final value of the

transition on segment S1or the sensitization of segment S1 needs to be maintained or

sustained until the downstream latch is transparent and the final value of transition is

latched. By sustaining the value the transition on the previous segment, the delay effect

(a) data pin has transition and

output has transition

(b) data pin has no transition and

output has transition

(c) data pin has no transition and output has no transition and

gate sensitized in previous frame

www.manaraa.com

77

7
7

on the previous segment is potentially maintained by setting non-controlling values on

the off-path inputs until the next segment’s latch becomes transparent.

In order to sustain a segment the final value of transition should be maintained on

all the on-path pins of segment S1. The off-path inputs of segment S1 also should be

sustained from the previous time frame. This is shown in Figure 3.13. Consider a three

segment path as shown in Figure 3.13. The on-path inputs are shown with dark lines. In

order to sensitize the path, segment S1 needs to be sensitized first. Since latch L1 is

transparent in phase 2 of cycle 1, where one cycle has four time frames, the path can be

activated by creating a transition on output of latch L1. Gates G1and G2 can be sensitized

with pseudo-robust conditions on the off-path inputs. Thus by sensitizing every gate of

the segment, S1 is sensitized. Since latch L2 is not transparent in phase 2 of cycle 1,

segment S1 should be sustained in phase 3 when latch L2 is transparent. This is done by

maintaining the final value of the transition on all the on-path inputs of gates of S1 and

the off-path inputs should maintain the same value as the previous time frame. Once L2 is

sensitized in phase 3, gates G3 and G4 can be sensitized with pseudo-robust conditions.

Latch L3 is transparent in phase 1 of a cycle, so segment S2 should be sustained until

phase 1 of cycle 2. Thus the path is sensitized in phase 1 of cycle 2.

In order to summarize the sensitization with respect to the conditions explained

previously for D-latch, latch L1 is sensitized for the first time when clock turns on and

the output has a transition. For the first gate of the path, since there is no on-path input,

the gate is considered to be sensitized if the necessary transition is set at the output. After

necessary off-path assignments are made to the gates of segment S1 in timeframe as latch

L2 is not transparent in phase 2 of cycle 1, segment S1 is sensitized. Condition iii applies

for latch L1 and gate is marked sensitized. Latch L2 is sensitized in phase 3 according to

condition ii.

www.manaraa.com

78

7
8

Figure 3.13 Path sensitization with Sustaining

3.3.2.4 Fault Propagation

The test generator uses a split circuit model. So, once the last gate of the segment

is sensitized, there is a divergence created between good and the faulty machine at the

output of the last gate. In order to propagate the transition to a scan node or output,

sequential ATPG is used.

3.3.3 Segment Delay Fault Testing to Improve Fault Coverage

The coverage achieved by pseudo-robust sensitization may not be satisfactory in

most cases and so we introduce the segment delay fault model similar to the method used

in [42] to alleviate the problem of low coverage. All the faults that are targeted for test

generation are classified into test found, aborted and redundant. The faults which are

aborted or redundant are divided into sub-paths. These sub-paths are targeted for test

generation. The motivation behind picking redundant faults for test generation is that, a

complete path that is redundant under pseudo-robust condition may still be covered by

tests generated for sub-divisions of the original path. Also, the delay may not be evenly

distributed along the path. It is possible that the delay may be more concentrated in

certain portions of the path. Thus the paths can be divided and tests can be generated for

the sub-paths. The aborted faults are also divided into sub-paths because, the test may be

www.manaraa.com

79

7
9

aborted when the entire path is targeted however, a test can be potentially generated for a

portion of the path.

The faults in the given path delay fault list are first targeted and if a test is not

generated for a fault then the path is divided into two half sub-paths. The two half-paths

or segments are then targeted and tests are generated if possible. If test generation is not

possible for a segment, the segment is further divided into half and the process repeats

until a segment consists of only two gates. The overall flow for segmented delay fault

testing is shown in Figure 3.14.

Figure 3.14 Overall flow for Segmented Delay Fault Testing

Path delay Fault Set: Set of paths obtained by

enumerating paths between given sources and

destinations

Find set of pseudo-robustly testable paths

(PRT)

Pick a path that is either redundant or aborted

and divide the path by half

Test found for

both sub-paths?

Divide sub-path(s) that are not testable.

If number of gates for sub-path > 2, divide the

path into half further. Discard paths that

contain only single gate

Test found for one

of the sub-paths?

Add sub-path

to PRT

Does a sub-

path exist?

No

Yes

NoYes

No Yes

www.manaraa.com

80

8
0

Figure 3.15 An example circuit depicting paths that are robustly untestable

Figure 3.16 Tree structure for path storage

The paths are stored in an efficient tree structure so that duplication of paths can

be avoided. Consider a simple circuit in the Figure 3.15. The paths P1 = {g1, g2, g4, g5}

and P2 = {g1, g3, g4, g5} are robustly untestable. However, if we divide the path P1 into

sub-paths SP1 = {g1, g2} and SP2 = {g4, g5} and path P2 into sub-paths SP3 = {g1, g3}

and SP4 = {g4, g5}. It can be observed that the sub-paths SP2 and SP4 are the same and

hence it is sufficient to store a single path to avoid duplication. The paths are stored in a

tree structure as given in Figure 3.16. Every path (or sub-path) corresponds to a node in

the tree. Path P1 is has two child nodes corresponding to SP1 and SP2. Once a node a

www.manaraa.com

81

8
1

path is detected, all the sub-paths (child nodes) are marked detected and hence if an

aborted or redundant fault consists a node that has one or more of the sub-paths already

marked as detected, targeting them can be avoided.

3.4 Experimental Results

The experiments were carried out on industrial circuits and the effectiveness of

the test patterns generated was demonstrated on silicon. The patterns generated by the

path delay test generator were used for speed path debug and the performance was

compared with n-detect transition fault tests. The paths were selected using the on die

clock shrink mechanism [46] or critical path sourcing methodology. This methodology

helps identifying candidates for critical paths by manipulating frequency or duty cycle of

clock for one or more test cycles. The candidates for speed path are reported in terms of

source and destination latches. This information is used by a path enumeration utility to

enumerate the paths between the given source and destinations using depth first search.

Tests are generated for the paths using the proposed test generation process

described in previous section. The results are shown in Table 3.2. Column 1 gives the

circuit name, column 2 is the number of paths enumerated for the given sources and

destinations identified by critical path sourcing methodology. Columns 3, 4 and 5 give

the number of faults that are detected by robust sensitization, number of aborted faults

and number of redundant faults.

Table 3.2 Fault Statistics

Circuit Number of Paths Num Faults det Num faults abrt Num faults Red

Circuit A 752 273 261 218

Circuit B 42 42 0 0

www.manaraa.com

82

8
2

As can be seen that circuit B has 100% fault coverage while circuit A has a fault

coverage of 30% and an effectiveness of 42%. Effectiveness is defined as the percentage

of faults for which test is found with respect to total faults less the redundant faults. The

test pattern set generated for Circuit A was run on silicon and the performance of path

delay ATPG patterns was compared against transition n-detect patterns, where n=10. A

two dimensional plot of frequency versus IDV is given in Figure 3.17. The graph plots

frequency versus IDV for three sets of test patterns – functional test patterns, transition n-

detect patterns and path delay atpg test patterns. IDV stands for Intra-die-variation which

is a measure of process variations across the dies. Though the dies are from the same

wafer but the behavior of dies varies due to process variations. The graph is plotted for 93

dies and each point in the graph denotes the maximum frequency at which a die fails.

Path delay patterns identify failures at a frequency lower than the transition patterns. The

closer the gap between the patterns (n-detect or path delay) and functional patterns, the

more accurate are the patterns in identifying the speed paths. If the gap between the

patterns is too large it implies that the patterns may not identify actual critical paths.

When at-speed tests like transition ATPG or path delay patterns are used to test speed

paths, there are power droop issues because of loading or unloading of values in the scan

chains which might create illegal conditions in the design which would otherwise not be

possible during normal function of the design [55]. The power droops are accounted for

by providing guardbands.

In order to improve the fault coverage for circuit A, the path delay faults that are

either aborted or redundant are divided into sub-paths and the procedure described in

Section 3.3.3 is performed. For the 752 faults in Circuit A, there 2659 unique segmented

path delay faults generated by dividing the path into sub-paths and avoiding duplicate

faults in the fault list by using a tree structure. When path delay ATPG is performed on

the faults with pseudo-robust sensitization conditions, the statistics of the test generation

is reported in Table 3.3.

www.manaraa.com

83

8
3

Figure 3.17 Frequency versus IDV

Table 3.3 Fault Statistics for path delay ATPG with segmented path delay faults

Level Detections Aborts Redundants Total Faults %Det

0 273 261 218 752 36.3

1 1090 286 128 1504 72.4

2 2851 97 60 3008 94.7

3 5331 79 30 5440 97.9

4 722 2 0 724 99.7

The fault statistics reported in Table 3.3 represent the number of faults that are

detected, aborted and redundant respectively in columns 2, 3 and 4 at each level shown in

column 1. In the statistics reported, all the sub-paths are counted independently at each

level and therefore even though the tree structure facilitates re-using the same node in the

tree for multiple paths having the same sub-path, for reporting purpose we consider all

the sub-paths at each level. It can be observed that twice the aborted and redundant faults

in level k is equal to the total faults in the next level k+1. However, as we move to higher

www.manaraa.com

84

8
4

levels, from level 3 to 4, this does not hold true because all the paths are not of the same

length. This can be explained as follows. Consider a path P1 of length 4 and path P2 of

length 8. The sub-paths enumerated for path P1 belong to level 1, whereas the sub-paths

enumerated for path P2 belong to levels 1 and 2. Therefore, as we move on to higher

levels the number of nodes in the next level may not be twice the number of nodes in

previous level.

Without the segmented path delay ATPG, there are only 273 paths, for which test

is found. It can be observed that, as we move to higher levels the percentage detections

increase, which is expected because as the length of the path reduces, the chances of

detecting a fault is more. This in turn potentially increases the chances of detecting a

critical path. The quality of the patterns or the chances of detecting critical paths on

silicon is determined by the number of detections at each level. If there are more number

of detections in the earlier levels, it would potentially increase the chances of detecting

critical paths.

3.4 Conclusion

In this work, we propose path delay ATPG algorithm for partial scan designs

using pseudo-robust sensitization condition. Sensitization is propagated by sustaining

segments where there are sequential elements on the path. Sustaining plays an important

role in multiple clock domain designs. In order to improve the pseudo-robust fault

coverage, we propose a method of dividing the paths into sub-paths and generating tests

for the sub-paths. Path delay ATPG patterns can be used as an alternative to functional

patterns for identifying speed path failures. Experiments on industrial designs

demonstrate the effectiveness of path delay patterns over n-detect transition patterns.

In order to improve fault coverage, we propose to divide paths into shorter paths

and generate tests for portions of the path for which test is not found. Since the pseudo-

robust condition could be strict and it might not be possible to generate tests for entire

www.manaraa.com

85

8
5

path, the path can be divided and test can be generated for the shorter paths assuming that

the delay along the path may not be uniformly distributed and a path which is found to be

aborted or redundant can potentially have a test for a shorter path. We demonstrate the

effectiveness of this approach on industrial design.

www.manaraa.com

86

8
6

CHAPTER 4 CONCLUSIONS AND FUTURE RESEARCH

4.1 Conclusions

 With decreasing size of transistors, there are more number of gates integrated on

the chip thereby increasing the density and complexity of the chip. Due to increasing

complexity of designs, it necessitates the requirement to test the designs for defects.

Testing of manufactured chips directly impacts the overall cost. In this work, we address

two problems related to testing for failures on designs – (i) large test set size which

directly impacts the test application time, storage requirements and testing cost and (ii)

functional patterns when used for speed path debug could be really expensive

In chapter 2, we address the issues related to using large test set size for testing

designs. The size of the test set directly impacts the test application time which is directly

proportional to the product of the number of test patterns and the number of scan cells in

the longest scan chain. In addition to test application time, the test set size also impacts

the storage requirements. We propose an incremental dynamic compaction for partially

scanned designs. Typically the fault coverage curve of designs ramp up quickly initially

and slows down after some time and flattens in the tail portion of the curve. The cube

merging method, which is the basic compaction initially used in the test generation tool,

does not produce compaction friendly patterns in the tail of the curve. The proposed

incremental dynamic compaction method is suitable for designs for which the fault

coverage curve has a long tail by generating compaction friendly patterns using dynamic

compaction after a certain threshold in the fault coverage curve is reached. The method

exploits the benefit of cube merging in the initial region of the coverage curve and later

switching to dynamic compaction. Initially we proposed a method in which the

parameters for dynamic compaction are manually provided based on the fault coverage

curve. We demonstrated the effectiveness of the method on industrial designs with test

size reduction 36% and run time upto 4X times the cube merging method. We also

www.manaraa.com

87

8
7

proposed static untestability analysis method to address long run time, which checks for

activation violation and existence of a potential x-path to an observable point. Some

designs benefited from the method while the others had longer run-times. In addition to

static untestability analysis approach, a reasoning analysis method is proposed. This

method drops secondary faults that are redundant hence avoiding re-targeting of

redundant faults. As further enhancement, we automated the identification of parameters

for dynamic compaction, where the parameters are evaluated during the initial phase of

test generation where cube merging is performed. Experiments conducted on the

industrial designs demonstrated the effectiveness of the method. The method provided

30% compaction with 2X times the run time of cube merging when 32 bins were used in

both the methods. We conducted further experiments with larger number of bins. Since

using automatic parameter identification method would be run-time intensive, we

propose to use smaller bin size for the dynamic compaction as opposed to larger bin size

used for cube merging. The effectiveness of the method is demonstrated on industrial

designs.

In the completed research presented in Chapter 3, we presented a path delay fault

test generation methodology for partially scanned designs which is used to generate test

patterns to be used for speed path debug. There are various methods to test for speed

paths - functional patterns, n-detect transition patterns, path delay patterns. However, the

usage of functional patterns is not feasible because functional pattern generation is

expensive and the application cost is also high because the number of patterns is large

and functional testers are required for testing. In the proposed method, a simple path

sensitization approach is presented, that can be used to generate pseudo-robust tests,

which are near robust tests. In this work, a path is represented as segments, where

typically each segment begins at a sequential and ends at gate driving the next sequential

with some exceptions. The sensitization in multi-clock domain designs can be handled by

sustaining the previous segment until the latch of the next segment becomes transparent

www.manaraa.com

88

8
8

i.e. when the clock is turned on. It was observed that the path delay patterns demonstrated

better performance when compared with n-detect transition atpg patterns. The path delay

patterns identified speed path failures at lower frequencies than the n-detect transition

patterns, thus providing more accurate critical path debug. Another issue that is handled

in the proposed work is that the pseudo-robust fault coverage is low because of the strict

conditions on the off-path inputs of gates. In order to improve the fault coverage, we

propose a method where the paths that are aborted or redundant are sub-divided

iteratively.

4.2 Future Work

The incremental dynamic compaction technique which is based on identifying a

threshold and switching to dynamic compaction after cube merging successfully

addressed the issue of long fault coverage tail by providing upto 30% compaction over

the cube merging method in 2X run-time with bin size 32. The method is effective in the

fault coverage tail where compaction friendly patterns are necessary. However, there are

potential areas for improvement for the proposed work.

The run-time associated with the proposed method with smaller bin size is reasonable.

However, as the number of bins used is increased, even though the compaction achieved

is appreciable, but the run-times are long. The reason for the increased run-time is the

number of secondary faults selected per primary fault is large in some of the cases, which

does not benefit dynamic compaction, however impacts the run time. In some cases, it

might benefit if the threshold is moved further down the tail of the fault coverage curve.

Future research work can investigate potential solutions to improve run time when large

bin sizes are used. Another issue that was observed was for two of the test cases, there

was loss in fault coverage and the cause for the coverage loss was due to single test

cycles being used. The current work can be extended to multi-test cycles.

www.manaraa.com

89

8
9

REFERENCES

[1] Rudnick, E.M.; Patel, J.H.;, "Efficient techniques for dynamic test sequence

compaction," Computers, IEEE Transactions on , vol.48, no.3, pp.323-330, Mar

1999

[2] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital,

Memory and Mixed-Signal VLSI Circuits. Boston: Springer, 2005.

[3] Laung-Terng Wang, Cheng-Wen Wu and Xiaoqing Wen, “VLSI Test Principles and

Architectures: Design for Testability”,The Morgan Kaufmann Publishers, 2006

[4] K. T. Cheng and V. D. Agrawal, Unified Methods for VLSI Simulation and Test

Generation. Boston: Kluwer Academic Publishers, 1989.

[5] M. Abramovici, M. A. Breuer, and A. D. Friedman, “Digital Systems Testing and

Testable Design,” IEEE Press, Piscataway, NJ, 1994.

[6] Millman, S.D.; Acken, J.M.; , "Diagnosing CMOS bridging faults with stuck-at,

IDDQ, and voting model fault dictionaries," Custom Integrated Circuits Conference,

1994., Proceedings of the IEEE 1994 , vol., no., pp.409-412, 1-4 May 1994

[7] K.Y. Mei, “Bridging and Stuck-at Faults”, in IEEE Transaction On Computers, vol.

C-23(7, pp.720-727), 1974.

[8] Pomeranz, I.; Reddy, S.M.; , "Generation of Broadside Transition-Fault Test Sets

That Detect Four-Way Bridging Faults," Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on , vol.26, no.7, pp.1311-1319, July 2007

[9] Bernardi, P.; Reorda, M.S.; Bosio, A.; Girard, P.; Pravossoudovitch, S.; , "On the

Modeling of Gate Delay Faults by Means of Transition Delay Faults," Defect and

Fault Tolerance in VLSI and Nanotechnology Systems (DFT), 2011 IEEE

International Symposium on , vol., no., pp.226-232, 3-5 Oct. 2011

[10] Kwang-Ting Cheng; Krstic, A.; , "Current directions in automatic test-pattern

generation," Computer , vol.32, no.11, pp.58-64, Nov 1999

[11] Cha, C.W.; Donath, W.E.; Ozguner, F.; , "9-V Algorithm for Test Pattern

Generation of Combinational Digital Circuits," Computers, IEEE Transactions on ,

vol.C-27, no.3, pp.193-200, March 1978

[12] Fujiwara, H.; Shimono, T.;, "ON THE ACCELERATION OF TEST

GENERATION ALGORlTHMS," Fault-Tolerant Computing, 1995, ' Highlights

from Twenty-Five Years'., Twenty-Fifth International Symposium on , vol., no.,

pp.350, 27-30 Jun 1995

[13] P. Goel, “An Implicit Enumeration Algorithm to Generate Tests for Combinational

Logic Circuits,” IEEE Trans. on Computers, vol. C-30, no. 3, pp. 215–222, Mar.

1981.

[14] J. P. Roth, “Diagnosis of Automata Failures: A Calculus and a Method,” IBM

Journal of Research and Development, vol. 10, no. 4, pp. 278–291, July 1966.

www.manaraa.com

90

9
0

[15] Bommu, S.; Chandrasekar, K.; Kundu, R.; Sengupta, S.; , "CONCAT: CONflict

Driven Learning in ATPG for Industrial designs," Test Conference, 2008. ITC 2008.

IEEE International, vol., no., pp.1-10, 28-30 Oct. 2008

[16] B. Krishnamurthy and S. B. Akers, “On the Complexity of Estimating the Size of a

Test Set,” IEEE Trans. on Computers, vol. C-33, no. 8, pp. 750–753, Aug. 1984.

[17] Krishnamurthy, Balakrishnan; Akers, Sheldon B.; , "On the Complexity of

Estimating the Size of a Test Set," Computers, IEEE Transactions on , vol.C-33,

no.8, pp.750-753, Aug. 1984

 [18] S. B. Akers, C. Joseph, and B. Krishnamurthy, “On the role of independent fault

sets in the generation of minimal test sets,” in Proc. Int. Test Conf., Aug. 1987, pp.

1100–1107.

[19] Kajihara, S.; Pomeranz, I.; Kinoshita, K.; Reddy, S.M.; , “Cost effective

generation of minimal test sets for stuck-at faults in combinational logic circuits,”

IEEE Trans. Computer-Aided Design, vol. 14, pp. 1496–1504, Dec. 1995.

[20] I. Pomeranz, L. Reddy, and S. M. Reddy, “Compactest: A method to generate

compact test sets for combinational circuits,” in Proc. Int. Test Conf., Oct. 1991, pp.

194–203.

[21] G.-J. Tromp, “Minimal test sets for combinational circuits,” in Proc. Int. Test Conf.,

Oct. 1991, pp. 204–209.

[22] S. Kajihara, I. Pomeranz, K. Kinoshita, and S. M. Reddy, “Cost effective generation

of minimal test sets for stuck-at faults in combinational logic circuits,” in Proc.

Design Automation Conf., June 1993, pp. 102–106.

[23] M. H. Schulz, E. Trischler, and T. M. Sarfert, “SOCRATES: A highly efficient

automatic test pattern generation system,” IEEE Trans. Computer-Aided Design, vol.

7, pp. 126–137, Jan. 1988.

[24] Y. Matsunaga, “MINT-An exact algorithm for finding minimum test sets,” IEIC8

Trans. Fundamentals, vol. E76-A, pp. 1652-1658, Oct. 1993

[25] J.3. Chang and C.3. Lin, “Test set compaction for combinational circuits,” in

First Asian Test Symp., Nov. 1992, pp. 20-25

[26] P. Goel, and B. C. Rosales, “Test generation and dynamic compaction of tests,” in

Dig. Papers 1979 Test Con&, pp. 189-192, Oct. 1979

[27] “ROTCO: A reverse order test compaction technique,” in 1992 ZEEE EURO-ASIC

Con$, pp. 189-194, Sept. 1992.

[28] H. K. Lee and D. S. Ha, “On the Generation of Test Patterns for Combinational

Circuits,” Dept. Elect. Eng., Virginia Polytechnic Inst. State Univ., Blacksburg, VA,

Tech. Rep. 12-93, 1993.

[29] I. Pomeranz and S. M. Reddy, “Forward-looking fault simulation for improved static

compaction,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 20, no.

10, pp. 1262–1265, Oct. 2001.

www.manaraa.com

91

9
1

[30] S. Kajihara, H. Shiba, and K. Kinoshita, “Removal of redundancy in logic circuits

under classification of undetectable faults,” in Proc. 22
nd

 Fault-Tolerant Computing

Syrnp., July 1992, pp. 263-270.

[31] S. B. Akers et al., “on the role of independent fault sets in the generation of minimal

test sets,” 1987Int. Test Conf., pp. 1100-1107, Aug. 1987.

[32] S. B. Akers and B. Krishnamurthy, “On the application of test counting to VLSI

testing,” Computer Research Laboratory, Tektronix Laboratories, Technical Report

No. CR-85-12, Apr. 1985.

[33] Chin Jen Lin; Reddy, S.M.; , "On Delay Fault Testing in Logic Circuits," Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on , vol.6,

no.5, pp. 694- 703, September 1987

[34] J.Savir and S. Patil, “Scan-Based Transition Test,” IEEE Transactions on
Computer Aided Design of Integrated Circuits and Systems, Volume: 12 ,
Issue: 8 , Aug. 1993 Pages: 1232 – 1241.

[35] Fuchs, K.; Fink, F.; Schulz, M.H.; , "DYNAMITE: an efficient automatic test

pattern generation system for path delay faults," Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on , vol.10, no.10, pp.1323-

1335, Oct 1991

[36] G.L. Smith, “Model for delay faults based upon paths,” in Proc. 1985 Int. Conf.,

Nov. 1985, pp. 342-349.

[37] Agrawal, P.; Agrawal, V.D.; , "A New Method for Generating Tests for Delay Faults

in Non-Scan Circuits," VLSI Design, 1992. Proceedings., The Fifth International

Conference on, vol.,no.,pp. 4-11, 4-7 Jan1992

[38] Malaiya, Yashwant K.; Narayanaswamy, Ramesh; , "Modeling and Testing for

Timing Faults in Synchronous Sequential Circuits," Design & Test of Computers,

IEEE , vol.1, no.4, pp.62-74, Nov. 1984

[39] Ghosh, A.; Devadas, S.; Newton, A.R.; , "Test generation and verification for highly

sequential circuits," Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on , vol.10, no.5, pp.652-667, May 1991

[40] Pomeranz, I.; Reddy, S.M.; Uppaluri, P.; , "NEST: A Non-Enumerative Test

Generation Method for Path Delay Faults in Combinational Circuits," Design

Automation, 1993. 30th Conference on , vol., no., pp. 439- 445, 14-18 June 1993

[41] Pomeranz, I.; Reddy, S.M.; , "An efficient non-enumerative method to estimate path

delay fault coverage," Computer-Aided Design, 1992. ICCAD-92. Digest of

Technical Papers., 1992 IEEE/ACM International Conference on , vol., no., pp.560-

567, 8-12 Nov, 1992

[42] Sharma, M.; Patel, J.H.; , "Testing of critical paths for delay faults," Test

Conference, 2001. Proceedings. International , vol., no., pp.634-641, 2001

[43] Krstic, A.; Kwang-Ting Cheng; Chakradhar, S.T.; , "Identification and test

generation for primitive faults," Test Conference, 1996. Proceedings.,

International , vol., no., pp.423-432, 20-25 Oct 1996

www.manaraa.com

92

9
2

[44] Ruifeng Guo; Wu-Tung Cheng; Kun-Han Tsai; , "Speed-Path Debug Using At-

Speed Scan Test Patterns," Test Symposium, 2009 14th IEEE European , vol., no.,

pp.11-16, 25-29 May 2009

[45] Killpack, K.; Natarajan, S.; Krishnamachary, A.; Bastani, P.; , "Case Study on Speed

Failure Causes in a Microprocessor," Design & Test of Computers, IEEE , vol.25,

no.3, pp.224-230, May-June 2008

[46] Josephson, D., Gottlieb, B. Advances in Electronic Testing – Challenges and

Methodologies: Chapter 3 (Silicon Debug), pp. 77-108, Gizopoulos, D. (Editor),

Springer, 2005, ISBN 0-387-29408-2.

[47] Hamzaoglu, I.; Patel, J.H.; , "Test set compaction algorithms for combinational

circuits," Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on , vol.19, no.8, pp.957-963, Aug 2000

[48] I. Hamzaoglu and J. H. Patel, “New techniques for deterministic test pattern

generation,” in Proc. IEEE VLSI Test Symp., Apr. 1998, pp. 446–452.

[49] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational benchmark designs

and a special translator fortran,” in Proc. Int. Symp. Circuits and Systems, June

1985.

[50] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of sequential

benchmark circuits,” in Proc. Int. Symp. Circuits and Systems, May 1989, pp.

1929–1934.

[51] Kajihara, S.; Pomeranz, I.; Kinoshita, K.; Reddy, S.M.; , "On compacting test sets by

addition and removal of test vectors," VLSI Test Symposium, 1994. Proceedings.,

12th IEEE , vol., no., pp.202-207, 25-28 Apr 1994

[52] J.-S. Chang and C.-S. Lin, “Test set compaction for combinational circuits,” IEEE

Trans. Computer-Aided Design, vol. 14, pp. 1370–1378, Nov. 1995.

[53] Ayari, B.; Kaminska, B.; , "A new dynamic test vector compaction for automatic test

pattern generation," Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on , vol.13, no.3, pp.353-358, Mar 1994

[54] Santiago Remersaro, “On low power test and DFT techniques for test set

Compaction”, Ph.D. Dissertation, University of Iowa, 2008.

[55] Pant, P.; Skeels, E.; , "Hardware hooks for transition scan characterization," Test

Conference (ITC), 2011 IEEE International , vol., no., pp.1-8, 20-22 Sept. 2011

[56] Chandrasekar, K.; Bommu, S.; Sengupta, S.; , "Low Coverage Analysis using

dynamic un-testability debug in ATPG," VLSI Test Symposium (VTS), 2011 IEEE

29th , vol., no., pp.291-296, 1-5 May 2011

	Compaction mechanism to reduce test pattern counts and segmented delay fault testing for path delay faults
	Recommended Citation

	tmp.1374266234.pdf.w7HXK

