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ABSTRACT 

With rapid advancement in science and technology and decreasing feature size of 

transistors, the complexity of VLSI designs is constantly increasing. With increasing 

density and complexity of the designs, the probability of occurrence of defects also 

increases. Therefore testing of designs becomes essential in order to guarantee fault-free 

operation of devices.  

Testing of VLSI designs involves generation of test patterns, test pattern 

application and identification of defects in design. In case of scan based designs, the test 

set size directly impacts the test application time which is determined by the number of 

memory elements in the design and the test storage requirements. There are various 

methods in literature which are used to address the issue of large test set size classified as 

static or dynamic compaction methods depending on whether the test compaction 

algorithm is performed as a post-processing step after test generation or is integrated 

within the test generation. In general, there is a trade-off between the test compaction 

achievable and the run-time. Methods which are computationally intensive might provide 

better compaction, however, might have longer run times owing to the complexity of the 

algorithm. 

In the first part of the thesis we address the problem of large test set size in 

partially scanned designs by proposing an incremental dynamic compaction method. 

Typically, the fault coverage curve of designs ramp up very quickly in the beginning and 

later slows down and ultimately the curve flattens towards the tail of the curve. In the 

initial phase of test generation a greedy compaction method is used because initially there 

are easy-to-detect faults and the scope for compaction is better. However, in the later 

portion of the curve, there are hard-to-detect faults which affect compaction and we 

propose to use a dynamic compaction approach. We propose a novel mechanism to 

identify redundant faults during dynamic compaction to avoid targeting them later. The 
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effectiveness of method is demonstrated on industrial designs and test size reduction of 

30% is achieved. 

As the device complexity is increasing, delay defects are also increasing. Speed 

path debug is necessary in order to meet performance requirements. Speed paths are the 

frequency limiting paths in a design identified during debug. Speed paths can be tested 

using functional patterns, transition n-detect patterns or path delay patterns. However, 

usage of functional patterns for speed path debug is expensive because generation of 

functional patterns is expensive and the application cost is also high because the number 

of patterns is large and requires functional testers. 

In the second part of the dissertation we propose a simple path sensitization 

approach that can be used to generate pseudo-robust tests, which are near robust tests and 

can be used for designs that have multiple clock domains. The fault coverage for path 

delay fault APTG can be further improved by dividing the paths that are not testable 

under pseudo robust conditions, into shorter sub-paths. The effectiveness of the method is 

demonstrated on industrial designs.  
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ABSTRACT 

With rapid advancement in science and technology and decreasing feature size of 

transistors, the complexity of VLSI designs is constantly increasing. With increasing 

density and complexity of the designs, the probability of occurrence of defects also 

increases. Therefore testing of designs becomes essential in order to guarantee fault-free 

operation of devices.  

Testing of VLSI designs involves generation of test patterns, test pattern 

application and identification of defects in design. In case of scan based designs, the test 

set size directly impacts the test application time which is determined by the number of 

memory elements in the design and the test storage requirements. There are various 

methods in literature which are used to address the issue of large test set size classified as 

static or dynamic compaction methods depending on whether the test compaction 

algorithm is performed as a post-processing step after test generation or is integrated 

within the test generation. In general, there is a trade-off between the test compaction 

achievable and the run-time. Methods which are computationally intensive might provide 

better compaction, however, might have longer run times owing to the complexity of the 

algorithm. 

In the first part of the thesis we address the problem of large test set size in 

partially scanned designs by proposing an incremental dynamic compaction method. 

Typically, the fault coverage curve of designs ramp up very quickly in the beginning and 

later slows down and ultimately the curve flattens towards the tail of the curve. In the 

initial phase of test generation a greedy compaction method is used because initially there 

are easy-to-detect faults and the scope for compaction is better. However, in the later 

portion of the curve, there are hard-to-detect faults which affect compaction and we 

propose to use a dynamic compaction approach. We propose a novel mechanism to 

identify redundant faults during dynamic compaction to avoid targeting them later. The 
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effectiveness of method is demonstrated on industrial designs and test size reduction of 

30% is achieved. 

As the device complexity is increasing, delay defects are also increasing. Speed 

path debug is necessary in order to meet performance requirements. Speed paths are the 

frequency limiting paths in a design identified during debug. Speed paths can be tested 

using functional patterns, transition n-detect patterns or path delay patterns. However, 

usage of functional patterns for speed path debug is expensive because generation of 

functional patterns is expensive and the application cost is also high because the number 

of patterns is large and requires functional testers. 

In the second part of the dissertation we propose a simple path sensitization 

approach that can be used to generate pseudo-robust tests, which are near robust tests and 

can be used for designs that have multiple clock domains. The fault coverage for path 

delay fault APTG can be further improved by dividing the paths that are not testable 

under pseudo robust conditions, into shorter sub-paths. The effectiveness of the method is 

demonstrated on industrial designs.  
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CHAPTER 1 INTRODUCTION 

With the advancement in science and technology, the VLSI designs today are 

becoming more complex day by day. Testing of manufactured chips is very essential as it 

directly impacts the cost. There are various types of errors – design errors, fabrication 

errors, fabrication defects and physical failures. Design errors could be because of 

incomplete or inconsistent specification, design rule violations. Fabrication errors can be 

caused by wrong components, improper wiring, and improper soldering that could lead to 

shorts of interconnects. Fabrication defects happen due to imperfections in manufacturing 

process. Physical failure can happen during the lifetime of a system attributed to wear-out 

or environmental factors or process variations. Apart from these types of errors coding 

bugs also can lead to incorrect design and can cause errors. Thus it becomes essential to 

test the devices for any defects after manufacturing. 

1.1 Motivation 

In this work we address two issues related to testing devices for failures – (i) large 

test set size which impacts test application time and test storage requirements and (ii) 

usage of functional patterns for speed path debug which is very expensive. 

With increasing device complexity, testing complexity increases which in turn 

increases cost of testing. Testing scan-based designs demands smaller test set sizes 

because the test application time for such circuits directly depends on the number of 

memory elements in the schips in a given amount of time and thus fewer testers would be 

needed. Test pattern compaction plays a very important role in reducing the cost of 

testing very large designs by reducing the test application time. This also impacts the 

storage requirements of the test patterns in the testing hardware. In order to address this 

issue, we propose a dynamic compaction technique which reduces the test pattern size. 
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The second issue that is addressed in this work is identifying speed path failures 

in design to meet high performance requirements. Generation of functional patterns for 

all the critical paths is difficult and expensive. Functional patterns when used for speed 

path debug have the disadvantage of long times for debug since functional patterns 

typically are long and may take several cycles to reach an observed point. Therefore test 

patterns for path delay faults can be used to address this issue. Typically the robust fault 

coverage is very low for designs and thus it is not possible to cover all critical paths with 

robust tests. To address this issue, a method of dividing a path into sub-paths and 

generating tests for the sub-paths is proposed. 

Section 1.2 discusses various fault models and the test generation process.  

1.2 Background 

1.2.1  Fault Models 

Physical defects occur in chips during the chip fabrication process. There can be 

various types of defects like signal line breaks, lines shorted to ground, delayed signal 

propagation, etc. As there is a huge number of types of defects it is very difficult to 

generate tests for all types of defects. Defects may or may not cause device failure. A 

fault is a representation of a defect at the abstracted function level [2]. A good fault 

model reflects the behavior of the defects closely and is easy to analyze. It also should be 

computationally effective in fault simulation and test generation process [3]. Fault models 

are technology independent and thus changes in technology do not change the test 

generation for the faults. The different types of fault models are stuck-at fault model, 

bridge fault model, transition fault model, path delay fault model, open and short fault 

model, some of which are described below: 

 Stuck-at fault model:  

Stuck-at fault model is one of the earliest fault models and has been used for a 

very long time. A stuck-at fault is a fault that forces a constant logic value (1 
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or 0) on a signal line in the circuit, called stuck-at-1 or stuck-at-0 [5]. A short 

between the signal line and ground line is modeled by a stuck-at-0 fault and a 

short between a signal line and power line is modeled by a stuck-at-1 fault. 

The signal line can be a primary input, primary output, inputs and outputs of 

internal gates, fanout stems and fanout branches. A circuit that has n lines can 

have 2n single stuck-at faults and 3
n 

– 1 possible multiple stuck-at fault 

combinations [2, 4]. Stuck-at fault model is used in the current work for test 

pattern compaction. However, the technique is independent of the underlying 

fault model. 

 Bridge fault model:  

Bridge fault model is another important fault model. This is a commonly 

occurring type of fault. A bridge fault occurs when two signal lines are 

shorted unintentionally [6][7]. The shorts have a finite resistance. A bridge 

fault affects the voltage on both the signal lines involved in a bridge. 

Modeling and test generation of bridges is a challenging issue and thus there 

are several simplified models that have been developed for test generation. 

The wired AND/wired OR bridge fault model a short defect between two 

signal lines where the bridged nodes take a logic value which is the AND 

(OR) of the bridged signal lines. The four-way bridge fault model models 

various scenarios where the effect of the bridge fault depends on the relative 

strengths of the gates involved in the bridge [8].  

 Transition fault model:  

In the transition fault model, the time taken for a transition from input of gate 

to its output exceeds the specified limit [9]. The number of transition faults in 

a circuit is linear to the number of circuit lines. Just as the stuck-at fault 

model, there are two types of transition faults – slow-to-rise and slow-to-fall. 

A two pattern test is required to activate a transition fault, where the first 
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pattern sets the fault site to the initial value and the second pattern is required 

to launch the transition and once the fault is activated, it is propagated to an 

output. 

 Path delay fault model: 

The path delay fault models the cumulative effect of the delays along a path in 

the circuit. If the cumulative delay exceeds the clock period for the path, then 

the test pattern that fails the chip is said to detect the path delay fault. A two 

pattern test is required to detect a path delay fault [1] which creates a 

transition at the input of the path. The transition at the input of the path is 

propagated along the path by satisfying necessary off-path conditions. 

 

1.2.2  Test Generation 

Test generation is the process of generating an effective set of test patterns by 

which a high fault coverage can be achieved for a given fault model. The main objective 

of test generation is to generate patterns that will detect defects in a chip. Since the 

number of defects in a circuit is really large and generating test for all of them would be 

unrealistic, test pattern generators target the faults which are an abstract representation of 

defects. Test pattern generation consists of the following steps –  

 Fault activation: 

Fault activation sets the signal value on a line opposite to that produced by the 

fault at the faulty site in the faulty circuit. For example, in order to activate a 

stuck-at 1 fault on line l, 0 needs to be assigned to line l in order to excite the 

fault. 

 Fault propagation: 

This is the second phase where the fault effect is propagated by sensitizing at 

least one path from the fault site to a primary output or a scan cell. In order to 

propagate the fault effect from the fault site, there could be one or more gates 
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through which the fault effect can be propagated. These choices are called as 

d-frontiers. D-frontiers are gates that have an output value of X and have a 

fault effect on at least one of the inputs. The fault effect is propagated by 

assigning non-controlling values to inputs other than the input that has the 

fault effect. In order to propagate the fault effect from a fault site to an output, 

there should be at least one x-path between the two nodes. An x-path is a path 

between two gates of a circuit where the output value of all the gates is X. If 

there exists no x-path between the fault site and any primary output or scan 

cell, then a test cannot be generated for the fault. 

 Justification: 

Justification is the process of specifying primary input values or scan cell 

values in order to produce the signal values required for fault activation and 

fault propagation. The justification process is carried out by assigning 

necessary values at the inputs of gates for which the output values are 

specified to be 1 or 0  during fault activation and propagation, but are not 

implied by the input values. The set of all such gates is called as j-frontier.   

The effectiveness of the test set produced is measured in terms of fault coverage for the 

given fault model, the number of test patterns generated. The number of test vectors 

generated directly impacts the test application time. 

 

1.2.3  Design for Testability 

Test costs can be attributed to test pattern generation, fault simulation, generation 

of fault location information, test equipment cost, cost related to testing process which is 

the time required to detect and/or isolate a fault. The costs associated with testing could 

be high and can even exceed design costs. In order to limit the testing costs and to 

simplify testing a device, design for testability (DFT) techniques are used to ensure that a 

device is testable. Controllability and observability play an important role in generating a 
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test for a circuit. Controllability is the ability to obtain a required signal value at each gate 

in a circuit by setting certain values on the circuit’s inputs. Observability is the ability to 

determine a signal value at on any gate of the circuit by controlling the inputs of the 

circuit and observing its outputs.  

Basic testing infrastructure consists of three components: circuit under test, 

automatic test equipment (ATE) and ATE memory to store test patterns and expected test 

responses obtained by automatic test pattern generation (ATPG) tools as shown in Figure 

1.1. In order to test a given circuit (CUT), test patterns are applied at the inputs of the 

circuit and the output values obtained are compared with the test responses stored in the 

ATE memory. A circuit is considered to be fault free if the output response of the circuit 

matches with the output response stored in the ATE. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1  Manufacturing test of a circuit [54] 

 

 

 

Testing combinational circuit is easier than testing sequential circuits since the 

primary inputs can be set to required values and primary outputs can be observed. Testing 
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sequential designs is challenging because it takes several test cycles to get desired values 

on latches or flip-flops. This can also lead a large number of faults being untestable. In 

order to cope with low controllability and observability of sequential designs, design for 

testability (DFT) techniques is employed. The testability of a device improves with DFT 

methods since it enhances the controllability and observability of sequential elements. 

This is achieved by introducing scans in the design. 

Scan design is the most widely used structured DFT method that is used to 

improve the controllability and observability of the storage elements in sequential design. 

This is achieved by converting the sequential design into a scan design and the design is 

operated in functional mode and test modes. In functional mode, the circuit operates in 

functional configuration by turning off all the test signals. During test mode, a test mode 

signal is applied which converts all the flip-flops in the design into one or more shift 

registers called scan chains. This improves the controllability of the flip-flops as they can 

now be set to desired state during the test mode by shifting in appropriate values.   

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2  Scan based design 
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The observability of the flip-flops is also enhanced since the states of the flip-flops can be 

observed by shifting out the content of the scan chains. 

There are two types scan designs: full scan and partial scan designs. In full-scan 

design all the storage elements are converted into scan cells and combinational ATP can 

be used for test generation. In partial scan designs a portion of the storage elements is 

converted into scan cells and sequential ATPG is required for test generation since the 

design is still sequential since the complete design is not converted into scan design. The 

designs used in the current work are partially scan designs. 

 

1.3 Organization of the Thesis 

The thesis is organized as follows. Chapter 2 presents a dynamic compaction 

technique to address large test pattern size. Chapter 3 presents path delay fault test 

generation methodology in partially scanned designs and method to improve robust fault 

coverage. Chapter 4 draws the conclusions. 
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CHAPTER 2 INCREMENTAL DYNAMIC COMPACTION TECHNIQUE 

In this chapter we review various compaction techniques in the literature and 

present an incremental dynamic compaction approach to reduce test pattern size. In order 

to address the long run times of the approach we also present a static untestability and 

reasoning analysis method based on [15, 56]. Experimental results on industrial designs 

demonstrate the effectiveness of this technique. 

 

2.1 Introduction 

Earlier the major focus of research was to generate a complete test set efficiently 

for a given design. Several test generation algorithms have been proposed over the years 

[11-15]. Over the past two decades, the effort is directed towards minimizing the size of 

the test pattern set produced. The problem of finding the minimum test size for an 

irredundant combinational circuit by itself is proven to be NP-hard [17]. There are several 

compaction algorithms in the literature that are based on various heuristics, for example –

test generation based on independent fault set and compatible fault sets[19-21], double 

detection[19, 22], reverse order fault simulation[23], rotating backtrace[20]. Every new 

methodology is targeted towards getting better test size reduction and thus closing the 

gap further to the lower bound.  

The size of the test set directly impacts the test storage requirements and test 

application time, especially for circuits using scan design. The test application time is 

directly proportional to the product of the number of test patterns and the number of scan 

cells in the longest scan chain [19]. This necessitates generation of small test sets.  

The complexity of the compaction process plays an important role in test 

compaction. There are computation-intensive procedures proposed in the literature that 

produce minimal size test sets close to the lower bound [21, 24, 25]. For instance, in [9] 

tests are generated repeatedly which can detect several faults at the same time so as to 
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replace previous tests found. Though these methods produce small test sets, they are not 

suitable to large designs. Methods based on simple and efficient heuristics can be found 

in [20, 23, 26]. 

Test pattern compaction is aimed at generating a pattern set in which a test detects 

as many faults as possible. There are two ways of compaction – static and dynamic and 

are described below.  

 Static Compaction 

Static compaction is applied as a post processing step to already generated test 

sets, to reduce the test set size further and therefore is independent of the test 

generation process. Static compaction is performed after all the patterns are 

generated and this is independent of test generation. 

 Dynamic compaction 

Dynamic compaction is incorporated within the test generation process where a 

test cube is generated for a fault and the generated test cube is added as 

constraints to the next targeted fault. The advantage of dynamic compaction over 

static compaction is that it reduces the time required for post-processing step for 

compacting patterns. The dynamic compaction begins with a fault which is on top 

of previously ordered fault list, called as primary fault. The primary fault is 

targeted for test generation and if a test is generated for the fault, another fault 

called secondary fault is picked and a test generation for the fault is attempted. 

The test generation tries to generate a test for the secondary fault with the primary 

input values and scan cell values specified by previously generated test vector. 

The test generation for the secondary fault specifies only the unspecified values 

remaining from the previous test vector. This process is repeated for all the 

remaining faults remaining in the fault list or all the inputs are specified [20]. The 

unspecified inputs of the resulting test vector at the end are then random filled 

with 1s and 0s. This process is repeated with a different primary fault and the 
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entire process of is repeated with remaining secondary faults and the process 

continues until all the faults in the fault list are tried as primary faults. 

 

2.2 Review of Previous Work 

In this section below, some of the static and dynamic compaction methods are reviewed 

from literature. 

 

2.2.1  Reverse Order Fault Simulation 

Reverse order fault simulation is a very simple and effective method of 

compacting test patterns. The test patterns are simulated in reverse order of test 

generation, wherein a test that was generated later is simulated earlier [5]. If a test does 

not detect any new faults when it is simulated, then the test is dropped from the test set. 

Reverse order fault simulation is a widely used static compaction technique [23, 28] 

suitable for combinational ATPG. But reverse order simulation is most beneficial when 

applied to effective tests. Effective tests are obtained by simulating a test set in the order 

in which it was generated with fault simulation used for fault dropping. A test generated 

by deterministic test generation method is fault simulated to drop the faults it detects and 

thus every new test detects faults not detected by previous tests. If the test set is generated 

by non-deterministic method like random test generation, fault simulation with fault 

dropping needs to be additionally done so as to get effective tests. Once the effective tests 

are obtained, these can be used for reverse order fault simulation. However, if the 

additional pass of fault simulation is not applied to non-deterministic patterns, the reverse 

order simulation would only identify effective tests of the test patterns in the reverse 

order which would not achieve as much test size reduction as obtained when applied to 

effective tests [29].  
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2.2.2  Forward-looking reverse order fault simulation 

Forward-looking reverse order fault simulation [29] is an improvement over 

reverse order fault simulation. This method records the information about the first test in 

the test set that detects a fault for the first time. This is obtained by simulating the test set 

in the order in which it was generated combined with fault dropping. With this 

information, tests can be further dropped during reverse order fault simulation. This can 

be illustrated as follows. Consider a test set T = {t0, t1,…, tn-1} and let F = {f0, f1,…, fp-1} 

be the set of target faults. During forward looking reverse order fault simulation, every 

test in T is simulated in the reverse order with fault dropping similar to reverse order fault 

simulation. Before simulating a test ti, it is first determined whether it is necessary to 

simulate a pattern, and if it is not necessary then it is dropped without simulating the 

pattern. The decision to ascertain whether a test ti is necessary or not is based on the 

information of the first test that detects each test during the original order. Let the 

detection vector index of a test that detects a fault for the first time during forward order 

be denoted as detindex (fi). This can be obtained during fault simulation of F. During 

forward looking reverse order fault simulation, before simulating a test, the detection 

vector index of every fault     , is compared against the current test index. If the 

current test index i is greater than the detection vector index of all the faults in F, then the 

test is dropped without simulating it because the faults that will be detected by the test t i 

will be detected by later tests during reverse order fault simulation. If a fault      is 

such that the detection vector index of fi is the same as current test index, then the pattern 

is simulated because there will be no further tests that would detect fi 

 

2.2.3  Reverse Order Test Compaction (ROTCO) 

Reverse Order Test Compaction[27] is a method similar to reverse order fault 

simulation in [23] but with the difference that the test vectors are allowed to be 

“modified” in the process, thereby increasing the possibility of detecting faults that were 
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detected by earlier test vector which could potentially result in a smaller test set. This is 

based on the following reason. During the process of test generation, after every test is 

generated, fault simulation is performed and all the faults detected by the test are 

dropped. The faults dropped include the target faults for which the test was found and the 

faults that were detected additionally due to random filling of unspecified bits in the test 

vector. Only small number of faults is typically detected by the specified bits of the last 

vectors in the test set which are detected for the first time by the test vectors. There are a 

large number of unspecified inputs which can be specified in such a way that the faults 

detected by test that are generated earlier during test generation would be detected by the 

later tests. Therefore, the tests generated earlier during test generally could be possibly 

dropped. The order in which the vectors are processed is in the reverse order of test 

generation.  

 

 

 

Table 2.1  Before and after reverse order test compaction [27] 

Before reverse order test compaction After reverse order test compaction 

Test  Fault Test Fault 

t1 f1, f2 t1 f1, f2 

t2 f3 t21 f2, f3 

t3 f4 t31 f1, f4 

 

 

 

The complexity of ROTCO is much less than the complexity of complete test 

generation because the specified values in a test vector are left unchanged. 

The test compaction procedure can be explained with an example given in [27]. 

Consider an irredundant circuit with four faults {f1, f2, f3, f4}. Let the faults be detected 

by three test vectors as shown in the Table 2.1 above. The test t3 can be extended into a 
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test t31 which detects faults that are detected by earlier vectors by using the unspecified 

inputs of t3. Similarly if t2 can be extended to t21 such that it can detect f2 apart from f3, 

then t1 can be dropped from the test set. This is shown in Table 2.1. This would not be 

possible with reverse order fault simulation.  

The following information is required for ROTCO- 

1) The test set T = {t1, t2,…, tk}. 

2) Fault detected by each test vector, which are not detected by earlier test vectors. 

This is obtained by fault simulation which drops faults that are detected by a test 

vector. Let Fi be the set of faults detected by a test ti 

3) In order to distinguish the inputs specified by test generation from the inputs 

specified by random filling of unspecified bits, the unspecified bits filled by 

random filling should be given as x0 or x1 (x0(x1) stands for input randomly set to 

0(1))  

The tests are considered in reverse order. All the inputs with value x0 or x1 are 

changed to x. The fault lists F1, F2,…. Fi-1 are considered in increasing order of the size of 

the fault lists. The order within a fault set is not restricted. The test generation starts with 

specified inputs specified by test vector tk until t1. After attempting to generate a test tk1 

which possibly detects other faults apart from Fk, the unspecified inputs that are still x are 

changed back to their original value (x0 or x1). Since some of the unspecified values 

might get specified in the test generation, some of the faults in Fi  may no longer be 

detected. So, fault simulation is carried out for the modified t i and if the faults in Fi are no 

longer detected by the test vector, the test vector is restored to its original values. This 

ensures that the fault coverage is maintained as before. If the modified t i detects all the 

faults in Fi, it replaces the original test in the test set. All the faults in F1, F2,…, Fi-1 are 

fault simulated and all the faults that get detected are removed from their respective fault 

lists and are added to fault list Fi. If a fault list becomes empty in this process, the 
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respective test is dropped from the test set. This process is repeated for all ti in test set T. 

The remaining vectors left after this procedure is the reduced test set for the circuit. 

The test set size reduction when ROTCO is applied after test vectors generated 

using PODEM algorithm [13] is up to 56% on ISCAS 85 circuits and PLA benchmark 

circuits in [27]. Further when ROTCO was performed over COMPACTEST [20] with 

reverse order fault simulation, the test set size reduction was up to 20%. This is because 

the test sets produced by COMPACTEST is already compacted to a great extent and the 

number of faults detected by a test vector on an average is very large. This method is 

applicable for combinational patterns only. 

 

2.2.4  COMPACTEST 

In COMPACTEST [20], the authors propose a test generation method which uses 

independent faults for fault ordering, a test compaction method and a dynamic line 

justification method to generate tests that detect large number of faults and hence reduce 

the test set size. The importance of independent fault sets in the reduction of test size has 

been established in [31, 32]. An independent fault set is defined as a set of faults for 

which there exists no test that detects any pair of faults in the set. Independent fault sets 

are very useful for test generation because the smallest test set size cannot be smaller than 

the size of the largest independent fault set. The problem of computing the set of 

independent faults of maximum cardinality in a circuit is np-hard [16]. Algorithms to 

compute the set of independent faults of maximum cardinality (MIFS) in a circuit is 

discussed in [20, 32].  

During the pre-processing step of COMPACTEST, an ordered fault list is derived 

using MIFS for fanout free regions (FFRs) for collapsed fault set. The largest MIFS is 

placed at the top of the fault list, which is followed by the next largest MIFS and so on. 

The remaining collapsed faults which do not belong to any MIFS are added to the end of 

the fault list. During the computation of MIFS for the circuit, information regarding the 
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subsets of faults that can be potentially tested by the same vector is gathered. Basically, 

every fault f in an MIFS of an FFR is associated with other faults in the fanout-free 

region which can potentially be tested along with the fault f. 

 

2.2.4.1  Maximal Compaction Procedure 

The compaction procedure of COMPACTEST is described as follows. The fault 

at the top of the ordered fault list is selected to be targeted. This is called the primary 

fault. It is attempted to generate a test for the primary fault if possible. The information 

gathered during the pre-processing stage to find faults that can be targeted with the same 

fault in the FFR region to generate a test is utilized during the test generation process for 

the primary fault. As a result, a test vector is generated which detects a primary fault 

along with possibly additional faults in the FFR region. Once the test vector is generated, 

it is then maximally compacted to maximize the number of unspecified values in a test 

vector before targeting the next fault. The maximal compaction happens as follows. A 

primary input p is selected from the set of specified values in the test vector whose value 

is specified for the first time by the fault f targeted most recently. The value specified for 

the primary input is then complemented and implication is performed for the modified 

test vector. This is to ensure that the modified test vector still detects the fault f and if it 

still detects the fault f, the primary input p is marked, and otherwise it is left unmarked. 

The value of the primary input is restored to its original value as in the original test 

vector. This process is repeated for all the primary inputs specified for the first time 

during the test generation for f. Once all the primary inputs are tried, the primary inputs 

that were marked during the compaction procedure are then unspecified. This can be 

explained by an example from [20]. 

Consider a stuck at 0 fault on line a in the circuit shown in Figure 2.1. Let (1111) 

be the test vector generated for a stuck-at-0. The maximal compaction procedure starts by 

complementing the value of the primary input a, from 1 to 0. Implication is performed to 
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Figure 2.1  Example for maximal compaction [20] 

 

 

 

check whether the fault a stuck-at 0 is still detected under the test (0111). Since a stuck-at 

0 is not activated in this case, the input a is left unmarked and the value of input a is 

restored to 1. The next primary input b is considered and the value of 1 is flipped to 0 and 

implication is performed. Since the fault a stuck-at-0 still gets detected under the 

modified vector (1011), input b is marked. In a similar way, input is complemented and 

the same check is performed and since 1101 detects a stuck-at 0 it is also marked. Input 4 

is left unmarked because 1110 does not detect a stuck-at 0. Thus the compacted vector is 

(1xx1), where inputs a and d are left unmarked and inputs b and c are marked.  

The number of unspecified values obtained in the maximal compacted vector is 

independent of the order in which the inputs are processed since every input is processed 

beginning from the same initial state where all the other specified inputs in the original 

test vector remain the same except the current primary input on which the check is being 

performed. The resulting compacted vector contains the original vector, but not 

necessarily the fault for which the original test vector was generated will be detected by 

the specification of the unspecified values later. 

b : 1 

a : s-a-0
c : 1

d : 1
f

e

g
h

i j

k

l
`

m



www.manaraa.com

18 
 

 

1
8
 

After the primary fault f is targeted and the above compaction procedure is 

performed, the next fault in the ordered fault list picked for target for test generation. This 

fault is called secondary fault. The test generation process begins with the specified 

values in the test vector generated for the previous targeted fault and a test is generated 

for the secondary fault if possible by assigning values to only the unspecified inputs of 

the test vector. Once a test is generated for the secondary fault, additional faults present 

in the FFR region of the targeted secondary fault are tried for test generation to maximize 

the number of faults detected by the test vector. After this, the specified inputs of the test 

vector that were assigned during test generation of the secondary fault, are processed for 

maximal compaction. If the test generation for the targeted secondary fault was not 

possible, all the primary inputs specified during the process of test generation for the 

secondary fault are unspecified.  

This process is repeated until either all the faults in the fault list have been tried as 

secondary faults or all the inputs are specified in the test vector. Once either of the 

conditions is met, if there are unspecified inputs left, then they are randomly specified 

and the test vector is fault simulated. All the faults detected by the test vector are dropped 

from the fault list. The process of test generation and maximal compaction is repeated 

with the next primary fault which is at the top of the fault list. This process continues 

until either all the faults have been tried or the fault list is empty. 

 

2.2.4.2  Rotating backtrace 

The backtrack process is modified in way such that different paths are sensitized 

each time a line needs to be justified on a line. In the process, different faults along the 

various paths are potentially detected by the test vector generation. Rotating backtrace 

works as follows. Every gate is associated with a counter which is initialized to 0. During 

backtrack, whenever the output of a gate needs to be justified to a value which can be 

obtained by setting any of the inputs to the controlling value, the backtrace procedure 
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selects an input which is given by the counter. The counter is then incremented modulo n, 

where n is the number of inputs to the gate. Thus, each time a value needs to be justified 

at the output of a gate; it is done by setting a different input line. If the input selected by 

the counter already is specified, another input is selected and the counter is not 

incremented. In addition to the rotating backtrace using a counter to select an input, 

controllability measures can also be used to bias the selection of inputs.  

The experimental results with the heuristics of COMPACTEST applied on 

ISCAS-85 and ISCAS-89 benchmark circuits demonstrate a 50% reduction in the test set 

size on an average when compared to the test patterns generated on a test generator using 

PODEM and a deductive fault simulator, with reverse order fault simulation performed at 

the end of both the methods. There is a 2X increase in run-time with the COMPACTEST 

procedure of compaction. There is not much reduction in size of the test set when reverse 

order fault simulation is performed on the test set produced by COMPACTEST. This is 

illustrated the fact that COMPACTEST produces test patterns which are irredundant. 

 

2.2.5  Double Detection 

In Double detection [22], a dynamic compaction method is proposed. Double 

detection is based on using the unspecified input values during test generation process to 

increase the possibility of obtaining and then later dropping redundant test vectors. In 

order to accomplish this, a fault is detected twice before it is dropped from the fault list. 

For every fault in the fault list the following information is recorded: 

1) The fault index 

2) The information about number of times a fault is detected is stored in a variable 

called check and is coded as follows- 

check = 0 implies fault is not detected yet, 

check = 1 implies the fault has been detected once, 

check = 2 implies the fault has been detected at least twice 
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check = 3 is when a fault is aborted during test generation due to backtrack 

limit 

3) The test vector that detects a fault for the first time is stored in a variable called 

tvector  

Deterministic test generation happens until there exists a fault with check is 0 

exists. A fault f1 with check = 0 is chosen as a primary fault that is to be targeted. After a 

test is generated for the primary fault f1, another fault f2 is selected. f2 is called secondary 

target fault. The test vector that was generated for f1 is attempted to be extended by 

specifying additional inputs and is possible a test is generated for fault f2. This process is 

repeated until the test vector is fully specified or there are no more additional faults can 

be detected. Fault with check = 0 are selected first as secondary faults, followed by faults 

with check = 1. A fault is aborted when it is a primary fault there is no test that can be 

obtained within the given backtrack limit. The test generation procedure in [22] differs 

from [20] in which the faults with check = 1 are not selected as secondary faults and fault 

simulation is not performed on such faults. 

After a test is generated, the test vector is simulated and the number of faults 

detected for the first time by the test are stored in a variable one_check. When additional 

vectors are generated, if the variable check of a fault increases from 1 to 2, one_check for 

the test vector is decreased by one. Therefore, one_check represents the number of faults 

detected only by the test vector. If one_check for a test vector is greater than 0, it means 

that the test vector is essential and cannot be dropped. If one_check is 0, then the faults 

detected by the test vector are also detected by other vectors. This is shown in Table 2.2. 

Once test generation is completed, the redundant test vectors are reduced as follows. 

Vectors with one_check is greater than 0 are simulated first since these vectors detect 

faults that cannot be detected by any other vector in the test set. Then the remaining 

vectors whose one_check is 0 are simulated in reverse order compared to their original 

order in which they were generated. This way redundant test vectors are dropped and 
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Table 2.2  Example of double detection [22] 

Test vector Faults detected one_check 

t1 f1, f3 1 

t2 f1, f2 0 

t3 f2, f4 0 

t4 f4, f5 1 

 

 

 

additional redundant vectors can be dropped by recalculating the variables check and 

one_check and tvector. This process is repeated until one_check for all test vectors 

becomes greater than 0. This method along with dynamic fault ordering and rotating 

backtrace [22] was compared against test patterns generated by the method used in [30] 

where redundant elements are removed from circuits using test pattern generation. The 

test pattern size is 50.7% smaller than [30] and the CPU time required is 3.6X times the 

time in [30]. 

 

2.2.6  Essential Fault Reduction Method 

Hamzaoglu and Patel in [47] propose an essential fault reduction (EFR) technique 

for generation of compact test sets in combinational circuits for single stuck-at faults and 

a heuristic for estimation of minimum stuck-at fault test set size. These algorithms 

together with dynamic compaction method of [22] are incorporated into the test 

generation system in [48]. This method found better lower bounds and generated smaller 

test sets than the methods of [49, 50]. EFR algorithm is an improvement over 

Two_by_One (TBO) [19, 51] and Essential Fault Pruning (EFP) algorithms [52]. 

Some of the definitions used in [47] are defined as follows. A test vector is called 

an essential vector if it detects at least one fault that is not detected by any other test 

vector in the test set. An essential fault of a test vector is a fault that is detected only by 
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the test vector in the test set.  A test vector is considered redundant relative to a given test 

set, if it does not detect any essential faults. An essential fault f of a test vector    is said to 

be pruned if a test vector         in the test set is replaced by a new test vector   
  that 

detects the essential fault f, essential faults of    and faults detected only by    and   . 

A pair of faults is compatible if they can be detected by the same test vector. If the 

two faults cannot be detected by the same vector, they are called as incompatible. An 

incompatibility graph for a given set of faults is defined as              where 

                and                  and    are incompatible,        

and       [18, 52, 19, 21]. 

Once the initial test set is generated, EFR algorithm is used repetitively to prune 

essential faults of each test vector as much as possible. If all the essential faults of a test 

vector are pruned then a test is redundant and can be dropped from the test set. The TBO 

algorithm compacts tests by replacing two test vectors with a new one. This is 

accomplished by finding a test vector that detects the essential faults of both the vectors 

and the faults detected only by the two vectors. If this is not achievable by TBO, it may 

be achieved by three_by_two algorithm which replaces three test vectors with two new 

ones if possible. However, the N_by_M algorithm could be computationally expensive 

since in the worst case, it may involve       checks where T is the number of initial test 

vectors generated.  

EFP algorithm reduces the number of tests by pruning the essential faults of each 

test vector and if all the essential faults of a test vector are pruned, the vector can be 

dropped since it is redundant. EFP achieves better performance than TBO since it allows 

a test vector to prune its essential faults by replacing more than one vector in the test set. 

EFP tries to generate a test vector for        fault sets, where F is the number of 

essential faults and T is the number of test vectors generated initially. Generally F is 

larger than T, therefore EFP is more expensive than TBO. For N>2, the N_by_M 

algorithm is however more expensive than EFP. 
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The limitation of TBO and EFP approaches is that they carry out a localized 

greedy search by focusing on removal of one test at a time by pruning its essential faults. 

If the algorithm fails to prune even one of the essential faults for a test ti , the original test 

is recovered. This restriction may prevent elimination of another test vector tj from the 

test set because the essential faults of tj may be incompatible with essential faults of all 

other tests in the test set. However, the essential faults of tj may be compatible with those 

of ti except one of them. If ti were allowed to prune the incompatible essential fault then 

the essential faults of tj can be pruned and thus the test can be dropped from the test set.  

EFR algorithm overcomes the limitation of TBO and EFP by reducing the number 

of essential faults for a test vector by pruning the essential faults as many as possible. The 

method does not stop when it fails to prune one of the essential faults and goes ahead 

pruning other essential faults of the test vector. This can be explained with an example in 

[47] shown in Figure 2.2. Let the test set                   detect faults as given in the 

Figure 2.2. The incompatibility relation is also shown in Figure 2.2. TBO and EFP 

methods cannot reduce the test set size. EFR can reduce the size of the test set by 

replacing test vectors    with   
  which detects f2 and f3,    with   

  that detects f1, f5 and f6 

and    with   
  that detects f4 and f7. It can be observed that    now is redundant and thus 

it can be dropped. 

EFR can be used iteratively for further compaction. EFR has a worst case 

complexity as that of EFP and if used iteratively, the worst case complexity is           

where I is the number of iterations. The execution time is reduced based on a new 

incompatibility relation for stuck-at faults. This is based on the fact that even though a 

fault is pair-wise compatible with all the faults in a given fault set, it may be incompatible 
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if the faults are targeted together. The incompatibility relation is defined as follows. For a 

given set of faults              , the new incompatibility graph is defined as 

             where                 and                the faults in    

are incompatible with the faults in   ,        and       . This is used to speed 

up EFR algorithm. The iterations of the EFR algorithm are stopped as soon as the 

minimum test set size is reached instead of iterating a pre-determined number of times. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2  EFR example [47] 
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2.2.7  Dynamic Test Vector Compaction 

The dynamic compaction approach in [53] differs from traditional dynamic 

compaction approach. Typically in dynamic compaction, once test is generated for a 

fault, the next fault is picked from the fault list and is targeted for test generation. In [53] 

however, after a test is generated for a fault, instead of selecting the next untested fault 

from the fault list and generating a test for the fault, a compaction procedure called 

COMPACT is used. In the compaction procedure, a test Ti is compared with other tests 

generated earlier and if Ti is compactable with any of the previous tests Tj, where j<i then 

Tj is replaced with      . If Ti is not compactable the test is added to the test vector set. 

This compaction is performed repetitively and test compaction is obtained.  

 

 

 

 

 

 

 

Figure 2.3  Test Ti : X10 recording [53] 

 

 

 

An efficient data structure is used for the comparison of test vectors. The data 

structure contains an N dimension table, where N is the expected number of tests. Each 

test vector is identified by index as Ti and belongs to a cell sequence of type test-vector. 

The ith test vector can be obtained from the table TEST as TEST[i]. Each Ti record is a 

cell which contains two fields called depend and value both being integer type. The first 

field depend specifies the “significance” of a PI, i.e., if the value is 0 or 1 then it is 

considered to be significant and depend is set to 1 and if value is X then depend is 0. The 

second field value contains the test vector values for the corresponding PIs and if value is 
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1, it is always significant and if it is 0, then depend field is looked-up. This is illustrated 

in Figure 2.3. An integer consisting of 32 bits can store upto 32 PI values. The values of 

PIs are stored with two integers as explained above. 

In order to check for compactability between a test generated test and for a test 

generated previously TEST[i] from the table, the depend fields are compared first and 

then the value fields are compared. Once the comparisons are done and if the test 

generated test is compactable with the test TEST[i], the test is compacted with TEST[i]. 

In this way, the test generated test is compared with all the previously generated tests. If 

the test is not compactable with any of the tests, then the test is added to the table TEST. 

Before picking the next fault for targeting, the compacted result or the generated test test 

is fault simulated. 

The advantage of this method is it is very simple and the memory requirements 

are minimal since the values of the inputs are stored in two integers. The compaction 

achieved by this method is 40% for smaller circuits and about 50% for larger circuits 

(over 1000 gates) when compared with tests generated using PODEM. 

 

2.3 The Proposed Method 

In this section, we present an incremental dynamic compaction approach that uses 

a cube merging mechanism with dynamic compaction. We also propose a reasoning 

analysis approach to drop redundant secondary faults from being targeted again in order 

to improve the run-time.  

 

2.3.1  Motivation 

The importance of minimum size test sets has been observed in the previous 

section and we have reviewed methods from literature to achieve this. Test set size 

impacts the test storage requirements and test application time. Test application time is 

directly proportional to the product of the number of tests and the number of scan cells in 
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the longest scan chain in the design. In this work, an incremental approach is proposed 

which addresses the issue of growing test pattern size.  

The fault coverage curve for the designs typically ramps up vigorously in the 

beginning due to random fault detections and slows down ultimately becoming almost 

flat after certain fault coverage is reached. Therefore, towards the tail end of the fault 

coverage curve there are very few faults detected per pattern. The existing test generator 

uses cube merging initially which is a greedy way of compaction and we use focused 

dynamic compaction after a threshold fault coverage after which the ramp slows down so 

as to utilize the benefit of random detections in the initial portion of the fault coverage 

curve and get the benefit of dynamic compaction in the tail of the curve.  

In this work we present an incremental dynamic compaction method and propose 

methods to reduce run-time. The contributions of the work are: 

1) Propose a test compaction approach that utilizes the benefit of both cube 

merging and dynamic compaction by initially performing cube 

merging/greedy compaction and later switching to dynamic compaction in the 

tail of the fault coverage curve. 

2) Static untestability analysis to identify and skip targeting secondary faults that 

cannot be activated and/or propagated with a given testcube. 

3) Reasoning analysis to identify untestable faults during dynamic compaction 

which are untestable independent of constraints set by dynamic compaction 

 

2.3.2  Preliminaries 

In this section the fault coverage curve is discussed and cube merging approach is 

described that is used during the initial ramp of the fault coverage curve. The basic 

incremental dynamic compaction with static untestability and reasoning analysis to 

reduce run time for dynamic compaction is presented later. 
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2.3.2.1  Cube merging Method 

In this section we describe the cube merging technique existing in the test pattern 

generator similar to [53] which is used to compact patterns on the fly as they are 

generated. Once a test is generated for a fault, the raw pattern is stored in a bin. A bin is a 

data structure to hold a compacted pattern resulting by merging of raw patterns. The 

number of bins is programmable and can be specified at the beginning of ATPG. A test 

cube is a pattern generated by the ATPG and the unspecified values are not specified yet. 

A new pattern generated is merged with the first available bin with which the test cube is 

compatible. In order to find whether a pattern is compatible with the pattern in a bin, the 

scan cell values and the primary input values are compared. If there are no conflicting 

values then the pattern is merged with the pattern in the bin.If there is no such bin 

available with which the raw pattern can be merged, the pattern is stored in the next 

available empty bin. If there is no empty bin remaining, then a bin that has the most 

number of tests compacted is written out after filling the unspecified bits with 1s and 0s. 

The compacted pattern that is written out is simulated and all faults that are detected by 

the pattern are dropped and are not targeted later. The overall flow of cube merging is 

illustrated as a flowchart in Figure 2.4. 

The process of cube merging can be explained with an example as shown in 

Figure 2.5. Consider a two bin datastructure for storing test cubes. The number of 

testcubes merged is initialized to 0 for every bin. When testcube t1 is generated, it is 

stored in the first bin, i.e. bin 0 as shown in Figure 2.5(b), since it is the first compatible 

bin available and the number of testcubes merged is updated to 1. When testcube t2 is 

generated, since it is compatible with the testcube in the first bin, it is merged with the 

testcube already existing in the bin and the merged pattern is stored in the bin. The 

number of testcubes merged is updated to 2 for bin 0. When testcube t3 is generated, since 

it is not compatible with the pattern in bin 0, it is stored in the next compatible bin, i.e. 

bin 1 as shown in Figure 2.5(b). The number of testcubes merged is changed from 0 to 1 
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Figure 2.4  Flow diagram for cube merging technique 

 

 

 

for bin 1. When testcube t4 is generated, it is incompatible with both bin 0 and bin 1 and 

since there are only two bins available, testcube in bin 0 is picked to be fault simulated 

since it has the maximum number of testcubes merged. Once the testcube is selected for 

fault simulation, the unspecified bits are random filled and the pattern is then fault 

simulated and the detected faults are dropped from the fault list. The testcube t4 is now 

stored in bin 0 as shown in Figure 2.5(c). 
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Test Index Testcube 

t1 1X0X1X 

t2 110X1X 

t3 10X10X 

t4 11010X 

(a) Test Cubes Generated 

 

 

 

 

 

(b) Bin data Structure - 1  

 

 

 

 

 

(c) Bin Data Structure - 2 

Figure 2.5  Example for Cube Merging 

 

 

 

The next section describes fault coverage curve when the cube merging technique 

is used and the motivation to use dynamic compaction so as to generate compatible test 

cubes and reduce the pattern count. 

 

2.3.2.2  Fault Coverage Curve 

A fault coverage curve plots the fault coverage with respect to the number of tests 

or equivalently scan operations. A fault coverage curve when the above cube merging 
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method/greedy method of compaction is used is shown in Figure 2.6. Initially there is 

huge number of detections during fault simulation. The random filling of unspecified 

values in the pattern causes a large number of faults to be detected during fault 

simulation. There is a rapid increase in the fault coverage within very small number of 

scan operations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Initial Ramp Tail 

Behavior Large random detects 

on fault simulation 

Effect of cube merging and 

random detects on fault 

simulation 

Few random detects on fault 

simulation, patterns not merge-

able 

Solution No compaction 

needed 

Cube merging performs well Cube merging not suitable and 

needs compaction friendly 

patterns 

Figure 2.6  An Example Fault Coverage Curve 

 

 

 

Compaction does not really have an impact on the number of fault detections. This is 

shown as the initial region of the fault coverage curve in Figure 2.6. The coverage ramp 

slows down after a few scan operations and there is lesser number of detections during 
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fault simulation. The compaction of patterns, by cube merging together with detections 

during fault simulations contribute to the fault detections in this region as shown as the 

ramp region in Figure 2.6. In the tail portion of the curve there is very little random 

detection during fault simulation. The patterns generated are not compaction friendly and 

thus very few patterns are compacted in every bin. Therefore, in order to generate 

compaction-friendly patterns dynamic compaction would aid in better compaction of 

patterns by generating a pattern incrementally. 

In the next section, the incremental dynamic compaction procedure is described. 

 

2.3.3  Incremental Dynamic Compaction 

In the incremental dynamic compaction approach we present in this section, 

dynamic compaction is used on top of cube merging. Unlike various methods in the 

literature where dynamic compaction starts from the very beginning of test generation, in 

the incremental approach, we use the benefit of random detections by fault simulation in 

the initial region and cube merging to achieve a certain threshold coverage. Dynamic 

compaction can be run-time intensive because a fault may be targeted multiple times if 

the fault requires scan cells or primary input values that conflict with the existing values 

of the inputs obtained from the previous test pattern generation. This can increase the 

run-time if dynamic compaction procedure is performed from the beginning of test 

generation. Therefore, in this method, cube merging is performed until threshold fault 

coverage is reached in order to exploit the advantage of run-time of cube merging. The 

threshold coverage is based on the fault coverage curve and the threshold coverage is set 

to coverage slightly before the tail portion of the fault coverage begins. A random fault 

ordering is used while targeting secondary faults. 

The backtrack limit for secondary faults is set to be less than the primary fault 

backtrack limit in order to avoid spending too much time on test generation for the 
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secondary faults. This is based on average backtrack limit for all the faults for which test 

is generated when cube merging is used.  

The number of secondary faults numsec to be targeted with a primary fault is 

limited and is specified as a user defined parameter. numsec is a function of the average 

time spent per backtrack, the target test pattern compaction and run time targeted for the  

entire test generation. numsec is calculated as follows. 

 

                       

                                                     

                                                      

 

                                                             

 

                                                  

                                                                                   

                                                                                    

                                                                        

#Number of secondary faults targeted per primary fault (2X-

t)/(#Passes*T_avesec) where 2X is the time that can be afforded for entire test 

generation, and X is the time taken for test generation when only cube merging is used 

for test compaction.  

numsec is a lower bound on the number of secondary faults to be targeted along 

with a primary fault. Typically the number of faults targeted per primary fault is set 

slightly higher than the number obtained by the above equation. 

  

2.3.4  Improving run time by Static Untestability Analysis 

The run time with basic dynamic compaction described above is some times more 

than twice the time when only cube merging is used for test compaction. The long run 



www.manaraa.com

34 
 

 

3
4
 

times can be attributed to targeting faults that cannot be either activated or propagated 

because of controlling values on the side inputs of the d-frontier gates. In order to address 

the long run time, the next fault that is picked randomly can be statically tested for 

activation condition violation and for any x-path blocks during fault propagation. This is 

accomplished by saving the values of gates during test generation whenever a test is 

generated. These values are used to check for activation violation check, for instance let a 

fault on line n be n stuck at 0 and the stored value for the previously generated test was 0, 

then if the fault n stuck at 0 is targeted with the scan cell and primary input values set by 

the previous test, then line n will attain a value 0 and the fault cannot meet its activation 

condition. Therefore, by looking up the stored value for the previous test, it can be 

determined if the fault can be activated or not and thus can help reduce the run time by 

avoiding targeting faults that cannot be activated. The check for activation violation is 

performed for the timeframes in a test cycle when the fault can be activated. 

The check for x-path blocks is done in a similar manner by performing depth first 

search up to a few levels from the fault site and check for any controlling values on side-

inputs that can block the fault effect propagation. X-path check is limited to a few levels 

only in order not to spend too much time in the depth first search traversal which may 

itself cause longer run-times. The traversal for x-path along a path stops either if the 

maximum number of levels is reached or if there is an x-path block or if there is a 

sequential gate. The traversal stops at a sequential gate because, depending on the clock 

of a sequential gate, the fault can be propagated in a later frame if not in the current 

timeframe. 

 

2.3.5  Reasoning Analysis to drop redundant faults 

Apart from the activation violation and x-path blocks, another factor that impacts 

the run time is redundant faults. Redundant faults are untestable faults and of two types – 

circuit untestable and constraint untestable [56]. Circuit untestable faults are redundant 
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faults and a test cannot be generated for such faults because of the nature of the circuit. 

Constraint untestable faults  are untestable due to constraints set for ATPG which are 

conservative because the design is not mature enough. These constraints may be relaxed 

later by a DFT engineer to improve the test coverage. Test coverage is different from 

fault coverage. Test coverage accounts for the redundant faults and hence the number of 

redundant faults is subtracted during the calculation of coverage, whereas fault coverage 

is calculated for total number of faults. During dynamic compaction, when a redundant 

fault is targeted there is no test generated with the constraints set by the previous test 

generated and the fault is targeted again with another primary fault. Thus, a redundant 

fault can be potentially targeted multiple times which can lead to longer run times. We 

present a reasoning analysis approach based on the conflict driven learning approach in 

[15, 56]. For completeness purpose, the method of [15] is briefly described here. The 

conflict driven learning uses an AND/OR reasoning framework that is built during fault 

propagation and justification. During fault propagation, the fault effect D that needs to be 

propagated through the fanouts of a d-frontier gate form an OR relationship for the fanout 

gates since one of the fanouts is chosen for propagation. There exists an AND 

relationship between the parent d-frontier and the selected d-frontier since the fault effect 

needs to be propagated through both the gates in order to reach an observed point. The 

AND relationship holds true even for the off-path J-frontiers that need to be justified in 

order to propagate the fault through the D-frontiers. Every time a gate is assigned a value, 

a graph node is created for the gate corresponding to a timeframe. The graph nodes have 

AND relationship as described previously. OR choices do not have a graph node created 

and are maintained separately in a stack. Implication graph is created only for the portion 

of the circuit that is active during test generation so as to keep the size of the implication 

graph small. 
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Figure 2.7  An example circuit showing a redundant fault 

 

 

 

The implication graph is used to identify the set of implicants that imply a value 

on a gate. Traversing backward from a given node in an implication graph, the set of 

implicants that imply a specific gate value on a node can be identified. Whenever a 

conflict scenario occurs during test generation, backward traversal is performed starting 

from the conflicting nodes to identify the set of implicants that cause the conflict. During 

the backward traversal when a conflict occurs, the traversal begins from the conflicting 

nodes and stops at a node if it is a decision node or an implication node at a decision level 

lower than the highest decision level of the conflicting nodes. The backtrack process 

proposed in [15] is non-chronological and backtracks are based on reasons collected for 

conflicts. For a j-frontier J, let R be the set of implicants for J. Let C1, C2,…., Cn be the 

choices to justify J. If all the choices lead to conflict and let Ri be the corresponding 

reason set for the conflict at Ci, then backtrack can be made to decision level l where, l is 

the maximum decision level among all the decision levels of nodes in the reason set {R, 

R1, R2, …., Rn }. 
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Consider d1 stuck at 1, a redundant fault in the circuit shown in Figure 2.7. The 

implication graph generated during test generation for d1 stuck at 1 fault is as shown in 

Figure 2.8. It can be seen that there is a conflict on gate E and while tracing back from 

the conflicting nodes according to the conflict diagnosis procedure in [15], the reason set 

only consists of node N1 since all the nodes are implication nodes and of the same 

decision level. The first node is not considered since it is the reason for activation of the 

fault. Therefore, a redundant fault has no reasons in conflict diagnosis process and this 

can be used for the benefit of dynamic compaction to drop redundant faults determined 

during test generation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8  Implication graph generated during ATPG for testing d1 s-a-1 

 

 

 

During incremental dynamic compaction, the primary input and scan cell values that are 

specified by previous test are attributed with a special property in order to determine if a 
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fault is untestable in the presence of the constraints set by the previous test or if the fault 

is untestable due to other reasons like pin constraints or functional constraints, etc. 

Consider a primary fault a1 stuck at 1 in Figure 2.7, for which test is generated by 

specifying I2=0 and I1=0. These specified primary values are applied as constraints to 

generate a test for the secondary fault B stuck at 0. It can be observed that B stuck at 0 

requires I2=1 and I3=1 and since I2=1 conflicts with the already specified value I2=0, a 

test cannot be generated for B stuck at 0 under the input values specified by previous test. 

In order to differentiate the constraints specified by dynamic compaction from other types 

of constraints, let a dummy node of type DYN to represent dynamic compaction 

constraints be added as a fanin to the specified primary inputs I2 and I1 as shown in 

Figure 2.9.  

The implication graph is shown in Figure 2.9. It can be observed that the backtrack 

procedure eventually ends in the node I2=0 and the reason for the fault B stuck at 0 being 

untestable is due to the constraints set by the process of dynamic compaction. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9  Implication graph generated during incremental dynamic compaction 
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The reason set R consists of the DYN node. In case fault d1 stuck at 1 which is a 

redundant fault is targeted as a secondary fault with primary fault a1 stuck at 0. The 

backtrack process will be independent of the dynamic compaction constraints and the 

reason set R will be empty. This can be used to drop redundant faults from being targeted  

again with a later primary fault. 

 

2.3.6  Automatic Identification of Parameters for Dynamic Compaction 

The main drawback of the above proposed procedure is that the various 

parameters for enabling dynamic compaction namely – threshold, secondary fault 

backtrack limit and number of faults to be targeted per primary fault are calculated 

manually and need to be provided to ATPG. This requires that first the test generation 

tool needs to be run with the cube merging method of compaction and then the 

parameters need to be evaluated, which is time consuming. The calculation of the 

parameters can be automated and can be evaluated during initial cube merging and the 

parameters can be identified on the fly during test generation.  

In the automated method proposed here, cube merging is performed until a 

threshold is reached in order to exploit the advantage of run-time of cube merging. The 

decision point or the threshold is based on ratio of running average of unique detects 

(detections on faults simulation) and running average of unique targeted faults. Unique 

detections constitute the faults that are detected during fault simulation once the 

compacted pattern in the bin is to be fault simulated. These unique detections exclude the 

faults, which constitute the faults detected by the patterns of the merged test cube that is 

fault simulated. Therefore, the unique detects only include the detections that are 

unintentionally detected. The unique targeted faults are the faults corresponding to a 

merged pattern in a bin that is to be fault simulated. These faults consist of the ones that 

have not been detected yet and exclude the faults that were detected already due to fault 
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simulation of other patterns. This can happen when pattern in some other bin is fault 

simulated and the pattern accidentally detects additional faults, which belong to the 

current bin. The motivation to use this ratio is that it is more beneficial to use dynamic 

compaction in the region where the number of unique collateral detects with respect to 

the targeted faults is low. The ratio conceptually means that if the unintentional 

detections upon fault simulation per pattern fall to a small number, the tail region of the 

fault coverage curve is reached. This is when the patterns are not compatible and it is 

required to generate compaction friendly patterns and dynamic compaction is enabled 

beyond this threshold. In the proposed method we set the target ratio to 2. If the ratio is 

less than or equal to 2, dynamic compaction is enabled. In some cases, the number of 

patterns on the tester is restricted due to memory limitations. In such situations, the target 

ratio might not be reached yet. In such cases, dynamic compaction is enabled at 60% of 

the number of patterns specified to the tool. 

 Backtrack limit for the secondary faults is calculated as the average of backtracks 

used for all the faults for which test is found during cube merging. Once the threshold is 

reached, dynamic compaction is enabled and the secondary backtrack limit is set as 

described. Secondary fault backtrack limit is incremented each time a new primary fault 

is tried until the average backtrack+50% of average is reached. 

The number of secondary faults to be targeted with a primary fault is to be 

restricted because this could impact the run-time for overall ATPG. This is determined 

during the initial portion of the test generation when cube merging is performed. This is 

given by the equation below. 

 

#faults per pass = factor * (# Total faults targeted)/(# Test Patterns)  

 

The ratio of total faults targeted and the number of test patterns gives an 

approximate estimate of the number faults that need to be targeted per primary fault or 



www.manaraa.com

41 
 

 

4
1
 

per test pattern. The secondary faults targeted along with a primary fault, constitute of the 

faults of three categories –  

 Test found faults – For these faults test is found with the current primary fault 

 Aborted faults – Test generation is not successful for these faults because they 

are aborted due to limited backtrack limit 

 Redundant faults – Test cannot be generated for these set of faults because 

these faults are untestable in the presence of the constraints set by the previous 

faults targeted with the current primary fault 

The Factor in the equation scales the ratio of the total faults targeted per test pattern and 

is required because towards the tail end of the curve, the number of faults that need to be 

targeted is large in order to achieve test size reduction because the probability of 

generating a test in the tail is reduced because of the nature of the faults which are hard-

to-detect. The Factor is set to 10 in our experiments. 

During the initial phase when only cube merging is performed, the running 

average of the number of test patterns compave compacted or merged in the written out bin 

is computed. Once the threshold ratio is achieved, dynamic compaction is enabled. All 

the patterns in the bins that have compacted greater than or equal to the running average 

compave, number of patterns, are written out and fault simulated. All the patterns in the 

remaining bins are emptied and are not fault simulated because the patterns are not 

optimally compacted. 

Apart from these three parameters which determine the amount of compaction 

achieved during dynamic compaction, the number of bins used during cube merging 

determines the compaction achieved during the initial phase of test generation. As the 

number of bins is increased, the compaction achieved also increases because there is 

greater possibility of finding a compatible bin or an empty bin. Therefore there is less 

frequent writing out of patterns from the bins and in turn greater compaction is achieved. 
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However, as the number of bins increases, the run-time also increases because it takes 

longer to identify a compatible bin. 

 

2.4 Experimental Results 

The incremental dynamic compaction technique was performed on industrial 

designs and the following experiments were conducted – (i) Comparison of basic 

incremental dynamic compaction over cube merging technique and (ii) Comparison of 

dynamic compaction with static untestability analysis and cube merging technique. The 

size of the various designs is shown in Table 2.3. 

 

2.4.1 Comparison of basic incremental dynamic compaction over cube merging technique 

The CONCAT procedure of [15, 56] is the underlying conflict learning procedure 

used in our experiments. The experiments are performed on industrial circuits and the 

results are shown in Table 2.4. Column 2 and 3 of Table 2.4 gives the test set sizes with 

cube merging method and with incremental dynamic compaction method respectively. 

Columns 4 and 5 represent the run times for the designs when run with cube merging 

method and with incremental dynamic compaction method respectively. Both the test set 

size and run-time is given at a given fault coverage. The number of scan operations is 

limited for the experiments and is curtailed at 10000 for smaller designs and 3000, 5000 

for larger designs. The percentage decrease in test size when incremental dynamic 

compaction is compared with cube merging technique is specified in column 6. The run 

time for incremental dynamic compaction is specified as a multiple of the run time for 

cube merging method and is specified in column 7. The maximum coverage for given 

limit on scan operations is given in Table 2.5. Column 2 is the maximum coverage  
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Table 2.3  Approximate size of designs 

Design Gate Count 

A 350k 

B 5600k 

C 850k 

D 6700k 

E 6200k 

F 10000k 

G 1200k 

H 6000k 

I 6500k 

 

 

 

Table 2.4  Results for incremental dynamic compaction vs. cube merging technique 

 Test Size Time (hours)   

Design CubeMerging DynComp CubeMerging DynComp %TestRed Time(X) 

A 10000 7899 2.6 3.55 21.02 1.37 

B 10000 6336 66.25 71.25 36.64 1.07 

C 10000 6486 10.83 38.11 35.14 3.52 

D 5000 3408 212.17 289.21 31.84 1.36 

E 3000 2218 109.31 144.65 26.06 1.32 

F 5000 3157 271.5 342.16 36.86 1.26 

G 7598 6885 7.45 30.68 9.38 4.11 

H 4025 2874 26.68 75.06 28.59 2.81 

I 4772 4021 60.5 82.58 15.73 1.36 
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Table 2.5  Maximum coverage achieved with cube merging and incremental dynamic 

compaction 

 

Table 2.6  Comparison of BDR and BDR+SUA approach 

 

Design Cube Merging DynComp 

A 91.48 93.23 

B 90.65 93.40 

C 94.52 95.53 

D 76.59 77.36 

E 77.92 80.35 

F 84.49 86.15 

G 85.52 85.53 

H 73.52 73.82 

I 70.22 70.40 

 Test Size Time (hours)  

Design BDC BDC+SUA BDC BDC+SUA TimeRed(%) 

A 7899 7826 3.55 3.63 -2.25 

B 6336 6305 71.25 65.83 7.6 

C 6486 6502 38.11 35.43 7.03 

D 3408 3379 289.21 316.38 -9.39 

E 2218 2196 144.65 157.03 -8.55 

F 3157 3129 342.16 323.21 5.54 

G 6885 4890* 30.68 14.3 - 

H 2874 3286* 75.06 81.46 - 

I 4021 3336* 82.58 73.77 - 
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It can be observed that the basic dynamic compaction approach gives test pattern 

size reduction upto 36% with incremental dynamic compaction and the run time is upto 4 

times the run time with cube merging technique. The target scan count reduction set for 

these experiments was 20%. The number of secondary faults to be targeted per primary 

fault is determined based on the equations described in previous section. The threshold 

fault coverage is determined based on the fault coverage curve for the cube merging 

technique. The secondary fault backtrack limit is based on average backtrack for testable 

faults. 

 

2.4.2 Comparison of basic incremental dynamic compaction with static untestability 

analysis over cube merging technique 

The experimental results for the runs with basic incremental dynamic compaction 

(BDC) and basic incremental dynamic compaction with static untestability analysis 

(BDC+SUA) is shown in Table 2.6. The test set sizes with BDC and BDC+SUA is 

shown in columns 2 and 3 respectively. Columns 4 and 5 show the test run times with 

BDC and BDC+SUA. It can be seen that the static untestability analysis helps in run time 

reduction for some of the smaller designs but adds to the run time for larger testcases. 

This is attributed to the additional time involved in saving the values of gates whenever a 

test is found, which can be large for larger circuits. In addition to this the depth first 

search traversal also is expensive in terms of time for larger circuits. The entries in 

column 3 that are star marked, is to indicate that the fault coverage is 0.3%, 0.5% and 

0.07% less than the cube merging fault coverage. 

 

2.4.3 Comparison of incremental dynamic compaction with automatic parameter 

identification method with cube merging technique 

Since the basic dynamic compaction approach requires the parameters for 

dynamic compaction namely the threshold, number of secondary faults per primary fault 



www.manaraa.com

46 
 

 

4
6
 

and the secondary fault backtrack limit to be provided to the tool manually, we proposed 

an automatic method of identification of parameters for dynamic compaction (API). 

Table 2.7 compares the test set size and run time obtained with API with cube merging. 

The number of bins used for cube merging and dynamic compaction is 32. The test set 

sizes with cube merging and API is shown in columns 2 and 3 respectively. Columns 4 

and 5 show the test run times with cube merging and API respectively. The reasoning 

analysis is used to drop secondary faults that are identified to be redundant during 

dynamic compaction. This avoids the redundant faults from being targeted again and 

reducing run-time over head. From the results it can be observed that the test size 

reduction achieved is approximately 30% and the run-time is 2X times the run-time it 

takes for cube merging. From the table it can be seen that for testcases G and I, the fault 

coverage drops by 0.5% and 0.6%. Upon investigation, it was found that the difference in 

fault coverage was because of the faults detected accidentally during fault simulation. 

When the patterns are fault simulated, a sequence of patterns is fault simulated and 

therefore there are accidental detections of faults that are activated and propagated across 

test patterns. These are the faults for which single test cycle is not sufficient and require 

more than one test cycle to be detected. 

When the number of bins is increased, the compaction achieved when cube 

merging is used typically increases. This happens because there is greater possibility of 

finding a compatible bin or an empty bin. Therefore the writing out of patterns from the 

bins is delayed and in turn greater compaction is achieved. 

However, as the number of bins increases, the run-time also increases because it 

takes longer to identify a compatible bin. When the automatic parameter identification 

method of dynamic compaction was used with large number of bins i.e. 1000 bins, the 

run-time associated with dynamic compaction was very large because the number of 

number of faults per primary fault that is selected is very large because as the number of 
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Table 2.7  Comparison of results for API vs. cube merging technique for 32 bin size 

 Test Size Time (hours)  

Design CubeMerge Auto CubeMerge Auto %TestRed Time(X) 

A 10000 5962 2.6 8.5 40.39 3.26 

B 10000 6574 66.25 69.63 34.26 1.05 

C 10000 6978 10.83 17.36 30.22 1.6 

D 5000 3386 212.17 249.78 32.28 1.11 

E 3000 2073 109.31 304.75 30.9 2.78 

F 5000 3417 271.5 333.23 31.66 1.22 

G 7598 4158 7.45 26.5 - - 

H 4025 3702 26.68 44 8.02 1.64 

I 4772 2316 60.5 90.23 - - 

 

 

 

Table 2.8  Maximum coverage achieved with API and cube merging for 32 bin size 

 

 

Design Cube Merging Auto 

A 91.48 95.82 

B 90.65 93.64 

C 94.52 95.61 

D 76.59 77.34 

E 77.92 81.11 

F 84.49 86.44 

G 85.52 85.00 

H 73.52 73.71 

I 70.22 69.67 
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Table 2.9  Parameter selection for API method for 32 bin size 

 

 

 

 

 

 

 

 

 

 

 

bins increases, the number faults targeted or resolved per test pattern is really large 

compared to the smaller bin size case.  Another factor that adds to run-time is that when 

dynamic compaction is enabled, all the patterns in the bins that have compacted greater 

than or equal to compave are fault simulated and the patterns in the remaining bins are 

discarded because the patterns in those bins are not optimally compacted. It was observed 

that a very small fraction of the patterns were actually fault simulated and most of the 

patterns in the bins were discarded. This implies that the effort spent in generating a test 

for those faults is lost and those faults are targeted again during dynamic compaction.  In 

order to account for this, we use smaller bin size of 256 for the initial phase of test 

generation where only cube merging is used. Therefore, lesser number of patterns in the 

bins is discarded and lesser number of secondary faults per primary fault are targeted.  

Table 2.10 compares the performance of API method when run with 256 bins 

against cube merging when run with 256 bins and 1000 bins. Columns 2 and 4 are the 

number of test patterns when cube merging is used with 256 bins and 1000 bins 

respectively. Columns 3 and 5 are the number of test patterns obtained when API is run  

Design Threshold #Secbkt #SecFaults 

A 85.46/3780 5 50 

B 89.29/6000 8 180 

C 91.76/4898 73 90 

D 75.22/2617 23 930 

E 75.91/1800 50 880 

F 83.16/3000 5 450 

G 81.82/2250 17 210 

H 72.12/2341 46 190 

I 67.22/1161 22 910 
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Table 2.10  Comparison of results for API(256 bin size) vs. cube merging technique ( at 

256 and 1000 bin size base coverage) 

 Test Size Time (hours) 

Design 
Cube@

256bin

s 

Auto 

@256 

BCov 

Cube 

@1000b

ins 

Auto 

@1000

BCov 

Cube@

256bin

s 

Auto 

@256 

BCov 

Cube 

@1000b

ins 

Auto 

@1000

BCov 

A 10000 7695 10000 7976 3.4 52.5 3.75 55 

B 10000 6595 10000 7076 58.85 124.75 70 174.61 

C 10000 7559 8731 7624 13.25 40.28 11.61 41.03 

D 4976 3852  4462 3359  214.6  867.68  205.18  800.25  

E 5000 3289  3000 3342  210.16  383.5  215.5  424.35  

F 3000 2264  3000 2720  321.5  421.9  260.5  938.63  

G 6669 - 6693 - - - - - 

H 3323 2014 2795 2080 23.21 59.71 21.5 62.8 

I 2045 - 1247 1513 28.81 - 26.18 232.66 

 

    

 

with 256 bins at the fault coverage achieved when cube merging is run with 256 bin size 

and 1000 bin size respectively. Columns 6 and 8 represent the time required for cube 

merging when run with 256 bins and 1000 bins respectively. Columns 7 and 9 give the 

time required when API is run with 256 bins at the fault coverage achieved when cube 

merging is run with 256 bin size and 1000 bin size respectively. It can be observed that 

the compaction achieved is >20% in most of the cases except testcases G and I. In case of 

G the fault coverage is 84.53%, the reason being the same as discussed previously. 

However, in the case of testcase I, when cube merging is run with 1000 bins, the fault 

coverage curve is steep and there is no tail portion. In this case dynamic compaction is 

not required because the cube merging method provides desired compaction and the 

motivation for the proposed method is to address long tail portion of the fault coverage  
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Table 2.11  Maxim Fault Coverage, Test size reduction and run-time overhead achieved 

with API and cube merging 

 

 

 

curve and the design does not have a tail region. Table 2.11 tabulates the fault coverage 

achieved with cube merging method with 256 bin size, 1000 bin size and API method 

respectively. The later columns give the test set size reduction and run-time overhead 

compared with cube merging when 1000 bins are used. 

2.5 Conclusion 

In this work, we propose an incremental dynamic compaction approach that 

incorporates cube merging method with dynamic compaction enabled after certain 

threshold is reached. The threshold is determined internally during test generation and 

dynamic compaction is enabled. The parameters for dynamic compaction are determined 

on the fly during test generation. This approach is very efficient in test pattern count 

reduction. When small bin size of 32 is used, there is approximately 30% compaction 

achieved with the proposed incremental dynamic compaction method, with a run-time of 

 Cube Coverage @256 bins Cube Cov @1000 bins Cube Cov 

Design 256b 1000b Auto  %ScanRed Time(X) %ScanRed Time(X) 

A 96.32 96.52 97.2  23.05 15.44 20.24 14.66 

B 91.33 92.01 94.06  34.05 2.12 29.24 2.49 

C 95.53 95.55 95.85  24.41 3.04 12.67 3.53 

D 77.20  77.04  77.51  22.58  4.04  24.71  3.9  

E 80.52  80.72  83.4  34.22  1.8  33.16  1.9  

F 85.06  86.09  86.43  24.53  1.3  9.33  3.6  

G 85.28 85.28 84.53 - - - - 

H 73.53 73.58 74.48 39.39 2.57 25.58 2.9 

I 69.60 69.15 69.57 - - -21.33 8.88 
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2X times the cube merging method. However, as the number of bins is increased, the run-

time increases when dynamic compaction is used, but the proposed method provides 

greater than 20% compaction. Static untestability analysis is proposed to address long 

run-time problem to avoid targeting secondary faults that could have activation conflicts 

or x-path blocks. However, the method reduces the run-time in some cases and does not 

benefit in some other cases. Reasoning analysis method which uses an AND/OR 

reasoning graph is proposed which helps identify the cause for a secondary fault being 

redundant during dynamic compaction. Redundant faults that are independent of the 

constraints set by dynamic compaction are dropped and hence such faults are avoided 

from being re-targeted and thus the unwanted effort required to re-target the redundant 

faults is avoided.  

The technique is effective in the fault coverage tail or designs with long fault 

coverage tail where compaction friendly patterns are necessary for hard to detect faults. 
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CHAPTER 3 PATH DELAY FAULT TESTING WITH SEGMENTED FAULT 

MODEL 

 

In this chapter we present a test generation methodology for path delay faults 

suitable to testing multi-segment paths in partially scanned designs. In order to increase 

the delay fault coverage of pseudo-robust tests we propose a methodology to divide full-

paths into sub-paths and generated patterns for sub-paths. Experiments conducted on 

industrial designs using the generated path delay fault detection patterns show that the 

generated patterns are more effective in identifying speed-path failures on silicon than n-

detect transition atpg patterns currently used for this purpose. 

 

3.1 Introduction 

 Due to increasing clock rate and scaling down of feature sizes, manufactured 

devices are subject to delay defects which affect the functional operation of the design 

when run at high frequency. Delay defects are mainly caused by process variations, 

increasing clock rates, increasing chip density. The process variations may lead to failure 

of device when run at higher clock rate for the specified time interval [33], however the 

device may function correctly at lower frequencies. This type of defect is modeled as 

delay fault. There are two types of delay fault models – lumped and distributed. Lumped 

type delay faults are treated as point defects and are considered to be concentrated at a 

gate output. Examples of lumped type delay fault model are transition faults and gate 

delay faults. Transition fault model assume the delay defect to affect only one gate in the 

circuit and the delay to be so large that the delay of any path passing through the fault site 

exceeds the cycle time. Gate delay fault model assumes that the delay is lumped at a gate 

in the circuit, however the assumption is that the delay on the gate only affects long paths 

through the fault site. The advantage of lumped delay fault model is that the number 

faults is linear in the number of gates in the circuit, test generation is relatively simple 
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because traditional stuck-at tests can be used with initialization vectors. The limitations 

of lumped delay fault model are that that since the fault model is based on the assumption 

that the delay is concentrated at a gate, the test for these faults may fail to detect delay 

faults resulting from a sum of several small delay defects. Distributed type delay fault is 

considered to be distributed along the path which accounts for the cumulative process 

variations. Example for distributed type delay fault model is path delay fault model. The 

advantages of distributed fault model are that it models the impact of cumulative delay 

variations, the tests for these faults can target critical paths of interest and can also target 

gate or transition faults. The major drawback of distributed fault model is that the number 

of paths in a circuit can be very large and the test generation process is relatively difficult 

because the test generation involves sensitizing and satisfying necessary off-path 

conditions in two time frames rather than one, which is the case for stuck-at atpg for all 

the gates on the path.  

The focus of the work is test generation for path delay faults in partial scanned 

circuits and we propose a method by which the fault coverage of untestable paths in the 

design can be increased by progressively generating patterns for smaller sub-paths when 

pattern generation for a full path fails.   

 

3.2 Preliminaries 

Fault models are used to model physical defects so as to translate the problem of 

fault analysis from a physical problem into a logical problem [5]. Fault modeling also 

reduces the complexity as many different physical faults may be modeled by the same 

logical fault. There are various types of fault models of which the delay fault model is 

used in our work. A delay defect causes the delay of a path to exceed the clock period or 

the cycle time. The slack of a path is defined as the difference between the designed cycle 

time and the actual delay. When the size of the delay exceeds the slack of a path it leads 

to incorrect values at the circuit output. There are two types of delay fault models: 
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 Transition fault model:   

Transition fault is a lumped delay fault model. In the transition fault model, the 

delay is considered so large that any path passing through the fault site exceeds 

the cycles time for the path [9]. A stuck at fault models the defect where a signal 

line is stuck at a value 0 or 1 permanently. A transition fault’s behavior is similar 

to a stuck-at fault, however it limited to a finite duration. A transition fault is a 

gross delay fault where the propagation delay of all the paths passing through the 

fault site exceeds the cycle time [34]. There are two types of transition faults – 

slow-to-rise and slow-to-fall. There can be a maximum of 2N transition faults in a 

circuit where N is the number of nets in the circuit. A two pattern test is required 

to activate a transition fault, where the initializing vector sets the fault site to the 

initial value and the final vector launches the transition. For a slow-to-rise 

transition, the final vector is a stuck-at 0 test for the faulty line. Once the 

transition is launched, it is propagated to an output. Consider the circuit shown in 

Figure 3.1, where line e has a slow to fall transition fault. V1 = 11XX and V2 = 

0x11 corresponding to inputs {a, b, c, d} is a two pattern test that detects the 

slow-to-rise fault on line e.  

 

 

 

 

 

 

 

 

Figure 3.1  Transition fault Model 

 

 

e : STF

a : 10

b : 1x

c : x1

d : x1

f : x0
o : 10/11
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 Path delay fault model: 

The path delay fault models distributed failures, which are typically caused by 

statistical variations in the manufacturing process. When the cumulative delay of 

a path exceeds the clock period for the path, it can cause chip failure. A lot of 

research has been done on various aspects of test generation and fault simulation 

of path delay faults. A path delay fault is tested using a two pattern test. The 

transition created by the test pattern is propagated along the path explicitly by 

sensitizing every gate of the path and satisfying necessary off-path conditions. 

The two popular ways in which a path can be sensitized are robust sensitization 

and non-robust sensitization.  

1) Robust sensitization:   

In robust sensitization the path is sensitized independent of the delay on the off- 

path inputs and the fault is detected even in the presence of delay on off-path 

inputs [35]. It is ideal sensitization and is practically difficult to achieve. Consider 

the path P = {A, C, E} shown in Figure 3.2. Signal lines A, C and E are the on-

path inputs of the path. Signal lines B, D and F are the off-path inputs of the path. 

 

 

  

 

 

 

Figure 3.2  Robust Sensitization 

 

 

 

The robust test to detect the path consists of a two pattern test - V1<S1> 

and V2<01> for inputs A and B, where S1 represents stable 1 value and S0 

represents stable value 0 in both the time frames. V1 is the initialization vector 

A: 10

B: S1

C: 10

D: S0

E: 01

F: S0

O: 01
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which sets the initial value of the transition and V2 is the final vector which 

launches the transition on the beginning of the path and activates the path delay 

fault. The test detects the path delay fault at the output independent of delay on 

the off-path inputs of the path. 

2) Non-robust sensitization:  

This assigns non-controlling values to the off-path inputs in the second vector of 

the test. Transition along every gate of the path is not ensured. Test can be 

invalidated by delays on off-path inputs under this type of sensitization [35]. Non-

robust sensitization is shown in Figure 3.3. Vectors <0X> and <11> form a non-

robust test for the path P. It can be seen that the test can get invalidated if the off-

path input F has a delayed 10 transition. Therefore non-robust tests do not 

guarantee the detection of a path delay fault independent of delays in other parts 

of the circuit. 

 

 

 

 

 

     

 

Figure 3.3  Non-robust Sensitization 

 

 

 

3) Pseudo-robust sensitization:  

This ensures that the final value of the off-path inputs is non-controlling value in 

both the vectors. This sensitization ensures transition on all the gates along the 

path. Due to hazards the final values of the gates may not be stable. Hazards are 

unwanted pulses or glitches that appear at internal signals or primary outputs and 

A: 01

B: X1

C: 10

D: X0

E: 01

F: X0

O: 01
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are caused due to difference in delays along reconvergent signal paths when there 

is transition at inputs [3]. There are two types of hazards – static and dynamic. 

Static hazards are caused due to glitches in a steady signal [37]. Dynamic hazards 

result from multiple changes on a signal before attaining the steady state [37]. The 

test maybe invalidated in the presence of hazards on off-path inputs. 

 

 

 

 

 

 

 

Figure 3.4  Pseudo-robust sensitization of AND gate for  (a) Rising Transition (b) Falling 

transition 

 

 

 

Pseudo-robust sensitization of AND gate, for rising and falling transition on on-

path input shown by thick line is illustrated in Figure 3.4(a) and (b) respectively. 

It can observed from Figure 3.4(b) that a test for a delayed falling transition can 

be invalidated in the presence of a hazard on the off-path input. The output which 

would be a delayed falling transition may have a delay free transition due to the 

hazard on the off-path input. Throughout the proposed work, pseudo-robust 

sensitization is used as robust sensitization is practically difficult to achieve. 

 

3.3 Review of Previous Work 

In this section, various test generation techniques that have been developed for 

path delay faults in combinational as well as sequential logic circuits are discussed. 

 

 



www.manaraa.com

58 
 

 

5
8
 

3.3.1  PODEM based Test generation for Path Delay Faults 

In [33] a five-valued logic system is proposed to generate robust deterministic test 

patterns based on PODEM to detect path delay faults. The paper also gives the necessary 

and sufficient conditions for a two pattern test to be a robust test for a given path. Robust 

tests are important since the tests used to detect path delay faults should not get 

invalidated in the presence of delays on other paths of the chip. The excessive delays are 

caused by the device parameter variations due to random fluctuations during fabrication 

of the circuits. Initially, robust tests with six-valued logic were considered in [36] to 

detect path faults by two pattern test set, though the method of test generation for a given 

transition path was not given. The five-valued logic system proposed in [33] is a subset of 

the seven-valued logic system in [37]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5  An example circuit 
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The five-valued logic values are {S0, S1, U0, U1, XX}. S1 (S0) represents 

hazard-free stable value on a line in the circuit where the initial value and final value on 

the line is 1(0). U1(U0) represents final value 1 of a signal line with initial value being 0 

or 1 and there could be a hazard or transient between the two time frames. U1 (U0) 

includes signal value S1 (S0). XX represents signal value being X in both initial and final 

time frame. XX covers both U1 and U0. 

Test generation for path delay faults in [33] is done similar to test generation for 

stuck-at faults with the difference that the test generation for path delay faults has the 

path determined upfront and so there is no need to determine path(s) to propagate the 

fault effect to an observe point unlike stuck-at faults. The necessary values required for 

the off-path inputs need to be justified. The PODEM based test generation approach in 

[33] is explained with an example below. 

Consider the circuit in Figure 3.5 for which a robust test needs to be generated for 

path A-G-M-O with a falling transition at the input of the path by setting A to U0. The 

three objectives necessary to generate a test are determined by the necessary off-path 

conditions for lines b1, k1 and N which are required to have value S1, U1 and S1 

respectively. These are ordered by priority as follows: set N to S1, b1 to S1 and k1 to U1. 

These values are justified as in PODEM and during backtrace when primary inputs are 

reached, only S1 and S0 values are tried if an internal line has an objective of S1 or S0 to 

be satisfied. This reduces the number of branches in the decision tree from four to two 

branches for a primary input. Only when the objective consists of setting a signal line 

covered by U1 or U0, a U1 or U0 is tried on primary inputs.  

The advantage of this method is that the logic system used facilitates generation 

of minimum specified tests as a result of which the number of specified inputs is less and 

hence leads to better compaction of test patterns for the set of path delay faults. 
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3.3.2  DYNAMITE 

DYNAMITE [35] is a test pattern generation system for path delay faults in 

combinational or scan-based circuits. DYNAMITE stands for Delay Fault Oriented 

Automatic Test Pattern Generation System and is based on the techniques proposed in 

SOCRATES [23]. The test pattern generator is capable of generating robust tests using a 

10-valued logic system as well as non-robust tests for path delay faults based on a 3-

valued logic. The major limitations of most of the path delay ATPG approaches is the 

large number of paths in a circuit which grows exponentially with depth and hence only a 

subset of paths can be targeted and needs to be determined prior to test generation in 

some way. The authors propose a new path sensitization procedure which identifies large 

number of redundant faults by single test generation attempt. The paths are stored in an 

efficient data structure called path tree. The path tree structure is described below. 

 

3.3.2.1  Path Tree Structure 

As the number of paths in a circuit could be very large, the paths need to be stored 

in an efficient manner. In [35], a tree data structure, in which portions of paths which are 

common to many paths from a primary input to a primary output are stored only once 

rather than allocating space for every path separately. According to the concept of path 

tree data structure, a structural path                     is a path from signal s1 to sn 

where the signal                  AND                  and signal si 

does not pass through a fan-out stem or output signal of XOR or XNOR gate. SPI   and SPO 

is the set of all primary inputs and primary outputs respectively.     corresponds to the 

set of all fan-out stems and     is the set of all output signals of XOR and XNOR gates. 

Paths which are same structurally and only differ in the direction of transition at PI, is 

accounted for by storing the direction of transition in the common leaf node. 
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2.3.2.2  Path Sensitization Procedure 

The path sensitization method is capable of processing large number of paths by 

identifying redundant path delay faults in a single ATG attempt. Consider a functional 

path        
      

    that is picked from the path tree. The path P is partitioned into k 

functional sub-paths        based on the node sequence           for the path P in 

the path tree. Every sub-path Si of path P is sensitized consecutively based on robust or 

non-robust test conditions. Once a sub-path is sensitized, implication is performed. If 

there are no conflicts during the implication step, sensitization continues with the next 

sub-path in the target path. If a conflict occurs during implication then all the sub-paths 

identified to be redundant are dropped from the path tree and the first node of the node 

sequence corresponding to the sub-path is flagged. Therefore, all functional paths which 

contain sub-path with the flagged node and a transition that corresponds to the flagged 

node can be dropped. Dropping sub-paths from the tree leads enables release of memory 

which helps improve memory efficiency. 

A major drawback of this approach is the huge amount of memory required for 

the path tree storage in case of large circuits.  

 

3.3.3  Test Generation for Path Delay Faults in Non-scan Circuits 

The authors in [37] propose a test generation method for path delay faults in 

synchronous sequential circuits. In order to generate a test for a path delay fault, the 

netlist model of the circuit under test is augmented with a logic block consisting of a pair 

of flip-flops and a few combinational gates. The gates in the logic block are driven by 

signals driving the inputs of the on-path gates of the path. The path delay fault is test by 

testing for a single stuck at fault in the logic block. The stuck-at fault in the block is 

activated and the fault effect is latched into the destination flip-flop once all the signals 

on the path are set in the states required for the test. Once the fault is activated, the fault 

effect is propagated to an observe point. Thus the test pattern sequence generated for the  
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Figure 3.6  Testing for path delay fault [37] 

 

 

 

stuck at fault performs initialization, path activation and fault propagation required for 

testing the path delay fault. 

The path delay fault model used in [37] is similar to the one given in [38]. A path 

starts from a primary input or a flip-flop and ends at either a primary output or a flip-flop.  

Test generation consists of three phases: 

1) Initialization:  

During this phase the flip-flops are set in the suitable states required for later phases 

by applying an initializing sequence. The initializing sequence v0 to vi as shown in Figure 

3.6 from [37] brings the circuit into a known state. At the end of the initialization phase, 

the flip-flops are set to states necessary for path activation. The clock is run at a slower 

rate so as to ensure that the circuit is initialized irrespective of any delays. 

2) Path Activation Phase: 

The path is activated by creating a transition at the beginning of the path by the two 

vectors vi+1 and vi+2. The path is mainly sensitized during the second vector and during 



www.manaraa.com

63 
 

 

6
3
 

the first vector, the path is sensitized only through those gates that propagate a non-

controlling value similar to that in [33]. Once vi+2 is applied, the flip-flops are clocked at 

the rated clock period. If there exists a delay on the signal arriving at the input of the flip-

flop that exceeds the rated clock period, the value latched in the flip-flop is a faulty value 

otherwise the flip-flop latches the fault-free value. 

3) Fault Propagation Phase:  

The vectors vi+3, …. are propagation vectors that propagate the latched value in the 

destination flip-flop of the path to an observe point. The propagation vectors are also 

applied at a slower clock as the initializing vectors to ensure fault-free operation.  

 

2.3.3.1  Test Generation Model 

For a given path and transition, the netlist is modified in which a test to detect a 

single stuck-at fault is generated which in turn detects the path delay fault. The stuck-at 

fault functions as follows- 

1) The activation of the stuck-at fault must happen only when the activation vectors 

have been applied to the combinational logic. The initialization vectors precede the 

path activation vectors. 

2) The stuck-at fault should not interfere with the normal operation of the circuit. Once 

the second vector for path activation is applied, the stuck at fault is activated and the 

fault effect is injected into the destination flip-flop of the path. 

3) Once the fault effect is latched in the destination flip-flop, the stuck-at fault should 

have no effect on the circuit and should allow fault-free operation of the circuit during 

the fault propagation phase 

In order to test a path between two flip-flops, a logic block consisting of a few 

combinational logic gates with two flip-flops are inserted into the circuit. A stuck-at 1 

fault is introduced at the output of the added logic block. The fault effect from the stuck-

at 1 fault is inserted using an AND or OR gate depending on the direction of the 
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transition. The AND or OR gate is inserted between the output of the combination path 

beginning from the source flip-flop and the input of the destination flip-flop.  

The test generation system uses three programs – a path generator that generates 

the paths, a stuck-fault model builder that reads the path and builds two models for rising 

and transition fault and STEED, a sequential test generator. STEED generates test for the 

stuck-at fault and initialization sequence and the propagation vectors.  

The main drawback of the approach is the complexity involved and is impractical 

for very large sequential circuits as run-time is long due to page faults. 

 

3.3.4  NEST: A Non-enumerative Test Generation Method 

In [40], the authors propose a test generation technique for path delay faults that is 

based on the method presented in [41] which generates tests for path delay faults of a 

given circuit without explicitly enumerating the paths. The major challenge in path delay 

fault testing is the exorbitantly large number of paths in the designs which in the worst 

case can be exponential in the number of lines in the circuit. In [41], a labeling procedure 

is used that assigns labels to appropriate lines in the circuit and counts the number of 

paths and the number of faults detected. The method proposed is based on the fact that a 

large number of path delay faults can be detected by propagating transitions robustly 

through portions of the circuits, without enumerating all the paths through which the 

transitions are propagated. The labeling procedure considers only single lines and not 

paths. Sub-circuits with large number of paths going through them and which can be 

tested simultaneously are identified. Test generation objectives are determined for every 

sub-circuit identified. These objectives ensure that a large number of faults are tested by 

the same test without having to enumerate the paths. Tests can be generated for paths that 

go through new lines which ultimately lead to covering the complete path delay faults in 

the design. By considering new lines in the design, only a number of faults equal to twice 

the number of lines in the circuit are targeted. 
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In order to detect a large number of faults, two lines l1 and l2 are selected in the 

circuit such that the pair (l1, l2) has the maximum number of paths. Test generation 

objectives to propagate transitions from l1 to l2 robustly through as many paths as 

possible are found. Additional objectives are added to robustly propagate transition from 

a primary input to l1 and l2 to primary output. Apart from these objectives, another 

constraint imposed on the selection of l1 and l2 is to detect a large number of paths 

between them by the same test. This however may not be possible always as there could 

be odd and even parity paths due to inverters. Thus, instead of selecting line l1 that has 

maximum number of paths to l2, the line l1 that has maximum of either odd parity or 

even parity paths is selected. Once line l1 is selected for every line l2, the pair (l1, l2) that 

has the maximum number of paths is chosen. 

During test generation, a single path from l2 to l1 is traced back. The output of l2 

is assigned a transition that allows all the inputs of the gate to be assigned a transition 

based on Table 3.1. Therefore for g2 being an AND gate, a 0x1 transition is assigned. If 

for a gate, only one of its inputs can be assigned a transition then an input that belongs to 

the selected paths from l1 to l2 is chosen. Test generation objectives are collected while 

tracing the path from l2 to l1 and if the objectives can be satisfied then they are stored. 

Once l1 is reached, backtrace is done from l1 to the last gate where there exists a choice 

among the inputs. A different input is selected and test generation objectives are 

determined for the sub-path from the selected input to l1. This process continues until all 

the paths from the decision point are checked and a decision point preceding it is selected 

and the process is repeated. If a decision point is reached a second time, backtrace stops 

there and hence each line is considered only once.  

The major advantage of this approach is that the main drawback of the path delay 

fault model which is the large number of faults that needs to be considered is overcome 

by not having to enumerate all the faults. This method is very effective for highly testable 

circuits. 
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Table 3.1  Robust propagation requirements (output) [40] 

Gate type Output transition 

0x1 1x0 

AND Any number of inputs Single input 

OR Single input Any number of inputs 

NAND Single input Any number of inputs 

NOR Any number of inputs Single input 

 

 

 

2.3.5  Segment delay fault model 

In [42], the authors present a method to overcome the problem of testing critical 

paths that are untestable. Critical paths in a circuit are paths with the largest delay and are 

important for delay fault testing because a delay defect on such paths can cause a timing 

violation on such paths. In general, very small number of critical paths is testable [42, 

43]. In [42], the untestable critical paths are tested robustly by covering the delay defects 

on the longest possible segments that are not covered by any testable critical path. The 

path selection is based on fixing a threshold for a given circuit and selecting paths that 

have length greater than the threshold. The threshold for each circuit is set such that there 

are a reasonable number of critical paths for the circuit. 

A functional segment is defined as follows- 

Definition: A functional segment (segment) is a sequence of connected gates, 

     
     

      
    where the gate g0 (gk) need not be a circuit primary input (primary 

output), and          is the transition on gate gi. 

 

 

 

 



www.manaraa.com

67 
 

 

6
7
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7  Atpg Flow [42] 

 

 

 

 

Given gate level netlist
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The delay D(S) of a segment S is          

   
   . All segments are assumed to be of 

fixed length       for segment S, where      is the number of gates in the segment S. A 

path begins from a primary input and ends at a primary output. If all the paths that pass 

through a segment S have a delay that exceeds the clock period, then the segment is said 

to be faulty. The problem of low robust coverage can be overcome by generating tests for 

uncovered segment which cannot be a part of any robustly testable. The overall flow to 

increase robust fault coverage by targeting uncovered segments of untestable but 

irredundant critical paths is shown in Figure 3.7. 

The advantage of this approach is that a large number of paths for which robust 

tests cannot be generated can be covered by robustly testable segments. These segments 

implicitly cover more than 87% of the irredundant paths for ISCAS circuits in [42]. 

 

3.4 The Proposed Method 

In this section, we propose an effective path delay pattern generation algorithm 

for multi-segment paths in partial scan designs. The proposed method introduces the 

concept of sustaining in order to sensitize a path which has intermediate sequential 

elements between the source and destination gates of the path. We also propose a method 

to increase the fault coverage for circuits which have low robust coverage by dividing the 

paths into sub-paths and generating tests for the sub-paths. 

 

3.3.1  Motivation 

The objective of this research is to propose an effective path delay atpg method to 

generate patterns for multi-segment paths. One of the applications of path delay patterns 

is they can be used for finding speed paths in a design.  In high performance circuits, 

speed path debug is an important part of the design process in order to meet performance 

requirements [44, 45]. Speed paths are the frequency limiting paths identified during 

debug. Based on the causes of speed path failures the design practices can be improved. 
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Functional test patterns are used by debug engineers to identify speed paths in the design 

and provide accurate results. However, generation of functional patterns is expensive and 

the application cost is also high because the number of patterns is large and requires 

functional testers. Speed paths are identified by shrinking the clock period of each 

individual test cycle run for the failing test. This helps identify critical clock cycles when 

the shrinking of the clock causes failure. The use of functional test patterns may be time-

consuming since the functional test patterns are very long and it might take many cycles 

to reach an observable node. It is important to identify the causes of speed failure so that 

the designers can develop strategies for better power and performance.  

The various methods to test for speed paths are using functional patterns, n-detect 

transition patterns, path delay patterns. Since usage of functional patterns is not feasible 

due to the above reasons, the industry is interested in alternate methods to identify speed 

paths. One alternate method is to use n-detect transition tests. The disadvantages of n-

detect transition atpg are that the size of the test pattern set can be very large and n-detect 

transition may or may not target critical paths in the design. Transition atpg also has the 

disadvantage that it may sensitize paths which are not critical and may lead to wrong 

paths being identified as speed paths. All these reasons motivate us to generate path delay 

patterns for speed path debug.    

In the previous section various test generation methods for path delay faults were 

reviewed. It has been observed that it is challenging problem to sensitize a path 

consisting of sequential gates. In [37], it was seen that the method proposed consisted of 

inserting a complex logic block into the circuit to generate tests for paths in sequential 

circuit beginning from a flip-flop and ending in a flip-flop. In the work we present here, 

we propose a simple path sensitization approach that can be used to generate pseudo-

robust tests, which are near robust tests and will be discussed in the next section. In the 

circuits today, there are multiple clock domains and thus source and destination latches of 

a path could be controlled by clocks of same or different domain. Assuming that a path 
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can be represented as a set of contiguous segments where a segment begins at a 

sequential boundary (with the exception of the first gate of the path which can be a 

primary input or combination gate), the issue of sensitization in multiple clock domains 

can be handled by sustaining the previous segment until the latch of the next segment 

becomes transparent i.e. when the clock is turned on.  

The contributions of the work are:  

1) In this work we present a path delay ATPG methodology as described above 

and compare the performance of the patterns generated by path delay ATPG 

with patterns generated by n-detect transition ATPG on silicon.  

2) The coverage for some designs is still low, so we also propose a method by 

which the fault coverage of a design can be increased by dividing the paths 

into sub-paths and generate test for the sub-paths. 

 

3.3.2  Test Generation Methodology 

In this section the main procedures for test generation are described and we 

describe the path sensitization conditions and path sensitization approach.  

 

3.3.2.1  Preliminary:  

Path Definition: 

In this section we define a path model and type of sensitization used in this work. 

A path P is defined as,                  , where P is a set of an ordered set of 

segments            . A segment is an ordered set of gates,                and 

starts with a sequential element and ends at the gate driving the next sequential element. 

The first segment starts at a combinational element or a primary input and the last 

segment ends at any gate. An example for a path is shown in Figure 3.8. The path is 

shown as highlighted in the Figure 3.8. The path consists of segments S1 and S2. 

Segment S1 consists of latch L1 followed by gates G1 and G2 and since L2 is a 
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sequential it belongs to a different segment S2. S2 consists of latch L2 followed by gates 

G3 and G4. For combinational circuits a path can only have one segment whereas a 

sequential circuit could have one or more segments. The on-path inputs to the path are a, 

b, d, f, g and i. The off-path inputs of the path are clk1, c, e, clk2, h and j. A path can be 

sensitized by launching a transition at the beginning of the path and satisfying necessary 

off-path conditions specified by type of sensitization.  

 

 

 

 

 

 

 

 

 

Figure 3.8  Example path delay fault 

 

 

 

The different ways in which a path can be sensitized are robust sensitization and 

non-robust sensitization. We described pseudo robust sensitization previously, which has 

slightly relaxed conditions than robust sensitization and more stringent conditions than 

non-robust sensitization. We use pseudo-robust sensitization in this work. 

 

3.3.2.2  Overall Path delay ATPG Flow 

Path delay ATPG consists of three steps – path activation, path sensitization and 

fault propagation. Path activation creates the required transition on the first gate of the 

first segment or the first gate of the path. Once the transition is set on the output of the 

first gate of the path, the path is sensitized by assigning necessary values to the off-path 
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inputs depending on the type of sensitization. Once all the gates of the path are sensitized, 

the fault is propagated to a primary output or scan cell using sequential ATPG. The 

overall test generation flow is shown in Figure 3.9. 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 3.9: Overall Test Generation Flow 

 

 

 

3.3.2.3  Path Sensitization 

Once activation is completed, the path sensitization begins and the transition from 

the first gate of the first segment is propagated to the end of the segment or end of the 

path. Once the last gate of the last segment is sensitized the path sensitization is 

complete. In other words, path sensitization is achieved by sensitizing all the segments of 

the path. A segment is said to be sensitized if all the gates of the segment are sensitized. 

In turn a gate is said to be sensitized if the sensitization at the input of the gate is 

successfully propagated to the output of the gate under necessary off-path conditions. A 

gate that requires necessary off-path assignments to be made is called a p-frontier and is 

described below.   

Path 

Activation

Path 

Sensitization

Fault 
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3.3.2.3.1  P-frontier 

If a gate needs to be assigned appropriate off-path inputs either in previous or 

current frame, it is called a path frontier gate or p-frontier gate. A combination gate is a 

p-frontier if atleast one of the inputs is sensitized and the output of the gate is not 

sensitized yet and none of the off-path inputs prevents from propagating the transition 

from input of the gate to output of the gate. A sequential gate is a p-frontier if the output 

is not sensitized yet and one of the inputs is sensitized and clock is unknown. 

Sensitization of the path is achieved by assigning proper off-path inputs to all p-frontier 

gates. The pseudo-robust sensitization of AND, multiplexer and D-latch gates are 

discussed below: 

1) Pseudo-robust sensitization of AND gate: 

For a rising transition at the on-path inputs as shown in Figure 3.10(a), the final 

value of the off-path input should have a non-controlling value, whereas for a falling 

transition at the on-path input, the off-path input requires to have non-controlling value in 

both the first and second timeframes. Unlike robust sensitization where stable value is 

required on off-path input, pseudo- robust sensitization requires the off-path values to be 

the same in previous and current time frame. The pseudo-robust conditions for NAND, 

OR/NOR gates are similar and are not shown here. 

 

 

 

 

 

 

 

Figure 3.10: Pseudo-robust conditions for AND gate  

a) rising transition and b) falling transition 
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Figure 3.11  Pseudo-robust conditions for MUX gate  

a) data pin on-path and b) control pin on-path 

 

 

 

2) Pseudo-robust sensitization of MUX gate:  

The pseudo-robust sensitization of a multiplexer when the data pin is on-path is 

shown in Figure 3.11(a). When input D0 is on-path and is sensitized, i.e. the gate driving 

the fanin-pin of the multiplexer is sensitized, then the control input should be 0 in the 

current frame and either 1 or 0 in the previous time frame. Inputs D1 and control pin are 

off-path. When the value on control pin is 0 in the previous and current time frames, 

input D0 is selected in both the time frames. Thus the delayed transition is observed at 

the output of the multiplexer. In this case the value on D1 has no impact on the output 

since D1 is not selected. The initial value of the transition can also be obtained from the 

off-path input, but the final value should be obtained from the on-path input. Therefore, 

when the control selects input D1 in previous time frame, the initial value at the output of 

the multiplexer should be set by input D1. When the control input has a delay free 

transition, it correctly sets the initial value of the transition at the output in the previous 

time frame and the delayed transition of the D0 input is observed at the output when 

control pin switches to 0 in current time frame. If there occurs a delay on control input, 

the initial value should still be set at the output. This is achieved by setting the same 

initial value of transition 0 on input D1 in both the timeframes. 

When the control input is on-path, and D0 and D1 are off-path inputs, consider a 

01 transition on the control input. The pseudo-robust condition of a multiplexer when the 

control pin is on-path is shown in Figure 3.11(b). The initial value of the transition at the 
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output is set by the D0 input as the control input selects D0 in previous time frame. So 

D0 should have the initial value of the transition 0(1). The final value of the transition at 

the output is set by the D1 input as the control input selects D1 in current time frame. 

When there is a delay on control input the value still remains 0 in the current time frame 

and thus selects input D0. So the output should still have the initial value of the transition 

and so the value of D0 should be maintained in both previous and current time frames. 

 

3) Pseudo-robust sensitization of D-latch gate: 

The pseudo-robust conditions for sensitizing a D-latch can be explained with an 

example shown in Figure 3.12. In this work we only evaluate sensitization conditions for 

the case when the data pin is on-path. 

  

a) Data pin is on-path: 

When the data pin is on-path, the gate can be sensitized under the following 

conditions: 

i) When data pin is sensitized, i.e. the data input has a transition and the fanin input gate 

is sensitized in second frame, the gate can be sensitized if the clock is turned on in the 

second time frame and thus the gate has a transition at the output.   

ii) If the data input is sensitized in both the timeframes and has same value in the 

previous and current time frame and the output of the gate has a transition when the 

clock turns on in current frame (clock is off in the previous frame in this case). 

iii) If data pin has no transition and gate was sensitized in the previous time frame, the 

gate can be sensitized. 

 

 

 

 

0

1 

1
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Figure 3.12  Pseudo-robust sensitization of D-latch for rising transition at data pin 

 

 

 

Cases ii and iii will be explained in the next section. The above conditions for 

sensitizing a gate when the data pin is on-path is shown in Figure 3.12 (a), (b) and (c) 

respectively. 

 

3.3.2.3.2  Sustaining 

In the circuits today, there are multiple clock domains and thus source and 

destination latches of a path could be controlled by clocks of same or different domain. In 

addition to this, critical paths in a design may not be limited to latch to latch or flop to 

flop and can include more than one sequential along the path. In order to propagate the 

sensitization from one segment (S1) to the following segment (S2), the final value of the 

transition on segment S1or the sensitization of segment S1 needs to be maintained or 

sustained until the downstream latch is transparent and the final value of transition is 

latched. By sustaining the value the transition on the previous segment, the delay effect 

(a) data pin has transition and 

output has transition 

(b) data pin has no transition and 

output has transition 

(c) data pin has no transition and output has no transition and 

gate sensitized in previous frame 
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on the previous segment is potentially maintained by setting non-controlling values on 

the off-path inputs until the next segment’s latch becomes transparent.  

In order to sustain a segment the final value of transition should be maintained on 

all the on-path pins of segment S1. The off-path inputs of segment S1 also should be 

sustained from the previous time frame. This is shown in Figure 3.13. Consider a three 

segment path as shown in Figure 3.13. The on-path inputs are shown with dark lines. In 

order to sensitize the path, segment S1 needs to be sensitized first. Since latch L1 is 

transparent in phase 2 of cycle 1, where one cycle has four time frames, the path can be 

activated by creating a transition on output of latch L1. Gates G1and G2 can be sensitized 

with pseudo-robust conditions on the off-path inputs. Thus by sensitizing every gate of 

the segment, S1 is sensitized. Since latch L2 is not transparent in phase 2 of cycle 1, 

segment S1 should be sustained in phase 3 when latch L2 is transparent. This is done by 

maintaining the final value of the transition on all the on-path inputs of gates of S1 and 

the off-path inputs should maintain the same value as the previous time frame. Once L2 is 

sensitized in phase 3, gates G3 and G4 can be sensitized with pseudo-robust conditions. 

Latch L3 is transparent in phase 1 of a cycle, so segment S2 should be sustained until 

phase 1 of cycle 2. Thus the path is sensitized in phase 1 of cycle 2.  

In order to summarize the sensitization with respect to the conditions explained 

previously for D-latch, latch L1 is sensitized for the first time when clock turns on and 

the output has a transition. For the first gate of the path, since there is no on-path input, 

the gate is considered to be sensitized if the necessary transition is set at the output. After 

necessary off-path assignments are made to the gates of segment S1 in timeframe as latch 

L2 is not transparent in phase 2 of cycle 1, segment S1 is sensitized. Condition iii applies 

for latch L1 and gate is marked sensitized. Latch L2 is sensitized in phase 3 according to 

condition ii.  
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Figure 3.13  Path sensitization with Sustaining 

 

 

 

3.3.2.4  Fault Propagation 

The test generator uses a split circuit model. So, once the last gate of the segment 

is sensitized, there is a divergence created between good and the faulty machine at the 

output of the last gate. In order to propagate the transition to a scan node or output, 

sequential ATPG is used. 

 

3.3.3  Segment Delay Fault Testing to Improve Fault Coverage 

The coverage achieved by pseudo-robust sensitization may not be satisfactory in 

most cases and so we introduce the segment delay fault model similar to the method used 

in [42] to alleviate the problem of low coverage. All the faults that are targeted for test 

generation are classified into test found, aborted and redundant. The faults which are 

aborted or redundant are divided into sub-paths. These sub-paths are targeted for test 

generation. The motivation behind picking redundant faults for test generation is that, a 

complete path that is redundant under pseudo-robust condition may still be covered by 

tests generated for sub-divisions of the original path. Also, the delay may not be evenly 

distributed along the path. It is possible that the delay may be more concentrated in 

certain portions of the path. Thus the paths can be divided and tests can be generated for 

the sub-paths. The aborted faults are also divided into sub-paths because, the test may be 
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aborted when the entire path is targeted however, a test can be potentially generated for a 

portion of the path. 

The faults in the given path delay fault list are first targeted and if a test is not 

generated for a fault then the path is divided into two half sub-paths. The two half-paths 

or segments are then targeted and tests are generated if possible. If test generation is not 

possible for a segment, the segment is further divided into half and the process repeats 

until a segment consists of only two gates. The overall flow for segmented delay fault 

testing is shown in Figure 3.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14  Overall flow for Segmented Delay Fault Testing 
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Figure 3.15  An example circuit depicting paths that are robustly untestable 

 

 

 

 

     

 

 

 

Figure 3.16  Tree structure for path storage 

 

 

 

The paths are stored in an efficient tree structure so that duplication of paths can 

be avoided. Consider a simple circuit in the Figure 3.15. The paths P1 = {g1, g2, g4, g5} 

and P2 = {g1, g3, g4, g5} are robustly untestable. However, if we divide the path P1 into 

sub-paths SP1 = {g1, g2} and SP2 = {g4, g5} and path P2 into sub-paths SP3 = {g1, g3} 

and SP4 = {g4, g5}. It can be observed that the sub-paths SP2 and SP4 are the same and 

hence it is sufficient to store a single path to avoid duplication. The paths are stored in a 

tree structure as given in Figure 3.16. Every path (or sub-path) corresponds to a node in 

the tree. Path P1 is has two child nodes corresponding to SP1 and SP2. Once a node a 
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path is detected, all the sub-paths (child nodes) are marked detected and hence if an 

aborted or redundant fault consists a node that has one or more of the sub-paths already 

marked as detected, targeting them can be avoided. 

 

3.4 Experimental Results 

The experiments were carried out on industrial circuits and the effectiveness of 

the test patterns generated was demonstrated on silicon. The patterns generated by the 

path delay test generator were used for speed path debug and the performance was 

compared with n-detect transition fault tests. The paths were selected using the on die 

clock shrink mechanism [46] or critical path sourcing methodology. This methodology 

helps identifying candidates for critical paths by manipulating frequency or duty cycle of 

clock for one or more test cycles. The candidates for speed path are reported in terms of 

source and destination latches. This information is used by a path enumeration utility to 

enumerate the paths between the given source and destinations using depth first search.  

Tests are generated for the paths using the proposed test generation process 

described in previous section. The results are shown in Table 3.2. Column 1 gives the 

circuit name, column 2 is the number of paths enumerated for the given sources and 

destinations identified by critical path sourcing methodology. Columns 3, 4 and 5 give 

the number of faults that are detected by robust sensitization, number of aborted faults 

and number of redundant faults. 

 

 

 

Table 3.2  Fault Statistics 

Circuit Number of Paths Num Faults det Num faults abrt Num faults Red 

Circuit A 752 273 261 218 

Circuit B 42 42 0 0 
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As can be seen that circuit B has 100% fault coverage while circuit A has a fault  

coverage of 30% and an effectiveness of 42%. Effectiveness is defined as the percentage 

of faults for which test is found with respect to total faults less the redundant faults. The 

test pattern set generated for Circuit A was run on silicon and the performance of path 

delay ATPG patterns was compared against transition n-detect patterns, where n=10. A 

two dimensional plot of frequency versus IDV is given in Figure 3.17. The graph plots 

frequency versus IDV for three sets of test patterns – functional test patterns, transition n-

detect patterns and path delay atpg test patterns. IDV stands for Intra-die-variation which 

is a measure of process variations across the dies. Though the dies are from the same 

wafer but the behavior of dies varies due to process variations. The graph is plotted for 93 

dies and each point in the graph denotes the maximum frequency at which a die fails. 

Path delay patterns identify failures at a frequency lower than the transition patterns. The 

closer the gap between the patterns (n-detect or path delay) and functional patterns, the 

more accurate are the patterns in identifying the speed paths. If the gap between the 

patterns is too large it implies that the patterns may not identify actual critical paths. 

When at-speed tests like transition ATPG or path delay patterns are used to test speed 

paths, there are power droop issues because of  loading or unloading of values in the scan 

chains which might create illegal conditions in the design which would otherwise not be 

possible during normal function of the design [55]. The power droops are accounted for 

by providing guardbands. 

In order to improve the fault coverage for circuit A, the path delay faults that are 

either aborted or redundant are divided into sub-paths and the procedure described in 

Section 3.3.3 is performed. For the 752 faults in Circuit A, there 2659 unique segmented 

path delay faults generated by dividing the path into sub-paths and avoiding duplicate 

faults in the fault list by using a tree structure. When path delay ATPG is performed on 

the faults with pseudo-robust sensitization conditions, the statistics of the test generation 

is reported in Table 3.3.   
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Figure 3.17  Frequency versus IDV 

 

 

 

Table 3.3  Fault Statistics for path delay ATPG with segmented path delay faults 

Level Detections Aborts Redundants Total Faults %Det 

0 273 261 218 752 36.3 

1 1090 286 128 1504 72.4 

2 2851 97 60 3008 94.7 

3 5331 79 30 5440 97.9 

4 722 2 0 724 99.7 

 

 

 

The fault statistics reported in Table 3.3 represent the number of faults that are 

detected, aborted and redundant respectively in columns 2, 3 and 4 at each level shown in 

column 1. In the statistics reported, all the sub-paths are counted independently at each 

level and therefore even though the tree structure facilitates re-using the same node in the 

tree for multiple paths having the same sub-path, for reporting purpose we consider all 

the sub-paths at each level. It can be observed that twice the aborted and redundant faults 

in level k is equal to the total faults in the next level k+1. However, as we move to higher 
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levels, from level 3 to 4, this does not hold true because all the paths are not of the same 

length. This can be explained as follows. Consider a path P1 of length 4 and path P2 of 

length 8. The sub-paths enumerated for path P1 belong to level 1, whereas the sub-paths 

enumerated for path P2 belong to levels 1 and 2. Therefore, as we move on to higher 

levels the number of nodes in the next level may not be twice the number of nodes in 

previous level.  

Without the segmented path delay ATPG, there are only 273 paths, for which test 

is found. It can be observed that, as we move to higher levels the percentage detections 

increase, which is expected because as the length of the path reduces, the chances of  

detecting a fault is more. This in turn potentially increases the chances of detecting a 

critical path. The quality of the patterns or the chances of detecting critical paths on 

silicon is determined by the number of detections at each level. If there are more number 

of detections in the earlier levels, it would potentially increase the chances of detecting 

critical paths. 

 

3.4 Conclusion 

In this work, we propose path delay ATPG algorithm for partial scan designs 

using pseudo-robust sensitization condition. Sensitization is propagated by sustaining 

segments where there are sequential elements on the path. Sustaining plays an important 

role in multiple clock domain designs. In order to improve the pseudo-robust fault 

coverage, we propose a method of dividing the paths into sub-paths and generating tests 

for the sub-paths. Path delay ATPG patterns can be used as an alternative to functional 

patterns for identifying speed path failures. Experiments on industrial designs 

demonstrate the effectiveness of path delay patterns over n-detect transition patterns. 

In order to improve fault coverage, we propose to divide paths into shorter paths 

and generate tests for portions of the path for which test is not found. Since the pseudo-

robust condition could be strict and it might not be possible to generate tests for entire 
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path, the path can be divided and test can be generated for the shorter paths assuming that 

the delay along the path may not be uniformly distributed and a path which is found to be 

aborted or redundant can potentially have a test for a shorter path. We demonstrate the 

effectiveness of this approach on industrial design. 
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CHAPTER 4 CONCLUSIONS AND FUTURE RESEARCH 

 

4.1 Conclusions 

            With decreasing size of transistors, there are more number of gates integrated on 

the chip thereby increasing the density and complexity of the chip. Due to increasing 

complexity of designs, it necessitates the requirement to test the designs for defects. 

Testing of manufactured chips directly impacts the overall cost. In this work, we address 

two problems related to testing for failures on designs – (i) large test set size which 

directly impacts the test application time, storage requirements and testing cost and (ii) 

functional patterns when used for speed path debug could be really expensive  

In chapter 2, we address the issues related to using large test set size for testing 

designs. The size of the test set directly impacts the test application time which is directly 

proportional to the product of the number of test patterns and the number of scan cells in 

the longest scan chain. In addition to test application time, the test set size also impacts 

the storage requirements. We propose an incremental dynamic compaction for partially 

scanned designs. Typically the fault coverage curve of designs ramp up quickly initially 

and slows down after some time and flattens in the tail portion of the curve. The cube 

merging method, which is the basic compaction initially used in the test generation tool, 

does not produce compaction friendly patterns in the tail of the curve. The proposed 

incremental dynamic compaction method is suitable for designs for which the fault 

coverage curve has a long tail by generating compaction friendly patterns using dynamic 

compaction after a certain threshold in the fault coverage curve is reached. The method 

exploits the benefit of cube merging in the initial region of the coverage curve and later 

switching to dynamic compaction. Initially we proposed a method in which the 

parameters for dynamic compaction are manually provided based on the fault coverage 

curve. We demonstrated the effectiveness of the method on industrial designs with test 

size reduction 36% and run time upto 4X times the cube merging method. We also 
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proposed static untestability analysis method to address long run time, which checks for 

activation violation and existence of a potential x-path to an observable point. Some 

designs benefited from the method while the others had longer run-times. In addition to 

static untestability analysis approach, a reasoning analysis method is proposed. This 

method drops secondary faults that are redundant hence avoiding re-targeting of 

redundant faults. As further enhancement, we automated the identification of parameters 

for dynamic compaction, where the parameters are evaluated during the initial phase of 

test generation where cube merging is performed. Experiments conducted on the 

industrial designs demonstrated the effectiveness of the method. The method provided 

30% compaction with 2X times the run time of cube merging when 32 bins were used in 

both the methods. We conducted further experiments with larger number of bins. Since 

using automatic parameter identification method would be run-time intensive, we 

propose to use smaller bin size for the dynamic compaction as opposed to larger bin size 

used for cube merging. The effectiveness of the method is demonstrated on industrial 

designs. 

In the completed research presented in Chapter 3, we presented a path delay fault 

test generation methodology for partially scanned designs which is used to generate test 

patterns to be used for speed path debug. There are various methods to test for speed 

paths - functional patterns, n-detect transition patterns, path delay patterns. However, the 

usage of functional patterns is not feasible because functional pattern generation is 

expensive and the application cost is also high because the number of patterns is large 

and functional testers are required for testing. In the proposed method, a simple path 

sensitization approach is presented, that can be used to generate pseudo-robust tests, 

which are near robust tests. In this work, a path is represented as segments, where 

typically each segment begins at a sequential and ends at gate driving the next sequential 

with some exceptions. The sensitization in multi-clock domain designs can be handled by 

sustaining the previous segment until the latch of the next segment becomes transparent 
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i.e. when the clock is turned on. It was observed that the path delay patterns demonstrated 

better performance when compared with n-detect transition atpg patterns. The path delay 

patterns identified speed path failures at lower frequencies than the n-detect transition 

patterns, thus providing more accurate critical path debug. Another issue that is handled 

in the proposed work is that the pseudo-robust fault coverage is low because of the strict 

conditions on the off-path inputs of gates. In order to improve the fault coverage, we 

propose a method where the paths that are aborted or redundant are sub-divided 

iteratively.  

 

4.2 Future Work 

The incremental dynamic compaction technique which is based on identifying a 

threshold and switching to dynamic compaction after cube merging successfully 

addressed the issue of long fault coverage tail by providing upto 30% compaction over 

the cube merging method in 2X run-time with bin size 32. The method is effective in the 

fault coverage tail where compaction friendly patterns are necessary. However, there are 

potential areas for improvement for the proposed work.  

The run-time associated with the proposed method with smaller bin size is reasonable. 

However, as the number of bins used is increased, even though the compaction achieved 

is appreciable, but the run-times are long. The reason for the increased run-time is the 

number of secondary faults selected per primary fault is large in some of the cases, which 

does not benefit dynamic compaction, however impacts the run time. In some cases, it 

might benefit if the threshold is moved further down the tail of the fault coverage curve. 

Future research work can investigate potential solutions to improve run time when large 

bin sizes are used. Another issue that was observed was for two of the test cases, there 

was loss in fault coverage and the cause for the coverage loss was due to single test 

cycles being used. The current work can be extended to multi-test cycles.  
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